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1 Introduction

The well-known travelling salesman problem can be formulated as follows. Given an n-tuple
of points (A1, . . . , An) in the Euclidean plane, what is the shortest Hamiltonian tour of it,
i.e., for which closed path [Aσ(1) · · ·Aσ(n)Aσ(1)] with some permutation σ ∈ Sn, is the total
length

|Aσ(1)Aσ(2)|+ . . .+ |Aσ(n−1)Aσ(n)|+ |Aσ(n)Aσ(1)|

minimal? Here EF denotes the line segment between E and F and |EF | its length. The
literature about this problem is abundant, as can be seen on the related Wikipedia page.

In the present article we consider a variant of the problem, in which the “cost of travel”
between two points E,F is the square |EF |2 of their distance. Given (A1, . . . , An) we study
its Hamiltonian energy defined by

h(A1, . . . , An) = min
σ∈Sn

C
(
[Aσ(1)Aσ(2) · · ·Aσ(n)Aσ(1)]

)
,

where

C
(
[B1 · · ·Bn]

)
= |B1B2|2 + · · ·+ |Bn−1Bn|2 (1)

denotes the cost of travel along some polygonal line [B1 · · ·Bn], closed or not.

Observe that contrary to the classical problem, it makes sense to consider repetitions
among the Ai and that adding another point might decrease the Hamiltonian energy. Ad-
ditionally, for a Hamiltonian tour minimizing the energy, line segments might cross – this
is also not the case for the classical problem. These will be detailed in Section 2.

Our main conjecture is the following
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Conjecture 1. For any integer n > 3 and any n-tuple (A1, . . . , An) of points in the plane,
there exist points Ai, Aj , Ak, not necessarily distinct, among them such that the Hamiltonian
energy of (A1, . . . , An) does not exceed the one of (Ai, Aj , Ak), i.e.

h(A1, . . . , An) ⩽ h(Ai, Aj , Ak).

In fact we wish to formulate a slightly stronger conjecture. First, observe that there is
a unique smallest disk D containing our n-tuple, and that the circle bounding D contains
either two points of the n-tuple forming a diameter, or (at least) three points containing
the center of D in their convex hull, or both. Then our second conjecture is as follows.

Conjecture 2. Given an integer n > 3 and an n-tuple (A1, . . . , An), let D be the smallest
disk containing {A1, . . . , An}.

If A1, A2, A3 are on the boundary of D and if the center of D is in their convex hull
then h(A1, . . . , An) ⩽ h(A1, A2, A3).

If A1A2 is a diameter of D, then h(A1, . . . , An) ⩽ h(A1, A2).

It is easy to prove Conjecture 2 when the n points are in convex position, see Propo-
sition 1. We will also prove Conjecture 2 when three or four of the points contain all
the points in their convex hull, see Corollary 10. The simplest unclear case is the one of
five points in convex position containing a sixth point in their convex hull. We will prove
Conjecture 2 in this case under the additional assumption that two of the points form a
diameter of D, see Corollary 16.

We reformulate Conjecture 1 using the following notation. Given a nonempty bounded
subset K of the plane and an integer n ∈ N, n ⩾ 2, let us introduce

Hn(K) = sup
{
h(A1, . . . , An) ; Ai ∈ K

}
. (2)

By definition each function Hn, n ⩾ 2, is nondecreasing for the inclusion: If K ⊆ L then
Hn(K) ⩽ Hn(L). Nevertheless, we were able to prove the monotonicity of the sequence(
Hn(K)

)
n∈N only for the few first terms, see Section 2 for details. For this reason, we put

H(K) = sup
n∈N

Hn(K). (3)

If K is a rectangle, it turns out that the whole sequence
(
Hn(K)

)
n⩾2

is constant, see

Corollary 9.

Conjecture 1 now is straightforwardly equivalent to

Conjecture 3. (Conjecture 1 reformulated). For any nonempty bounded subset K of the
plane, we have

H(K) = H3(K).

A weaker conjecture is the following.

Conjecture 4. For any nonempty bounded subset K of the plane, there exists an integer
N = N(K) such that H(K) = HN (K).
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The notion of Hamiltonian energy is closely related to the one of chain energy. Let us fix
two points A,B of the plane, let n ∈ N, and let (A1, . . . , An) be an n-tuple of points of the
plane. The chain energy of (A1, . . . , An) associated with AB, denoted by cAB(A1, . . . , An),
is the minimal cost of a Hamiltonian chain starting from A, passing once through all the
Ai, and ending at B:

cAB(A1, . . . , An) = min
σ∈Sn

C
(
[AAσ(1)Aσ(2) · · ·Aσ(n)B]

)
. (4)

Given an integer n ⩾ 1, we say that a bounded subset K of the plane satisfies Property
Pn if, for every n-tuple (A1, . . . , An) ∈ K, one has

cAB(A1, . . . , An) ⩽ |AB|2.

We say that K has Property P if it satisfies Pn for all n ∈ N.
Since Property Pn is stable by inclusion for each fixed n (i.e., if K satisfies Pn then any

subset of K does), it may be of interest to study subsets K satisfying Pn that are maximal
for the inclusion.

As is the case for Hn, except for the few first values of n, it is unclear if Pn implies Pk

for all k ⩽ n.

Several results and conjectures on the properties Pn are presented in Sections 3 and 4.
Here we only mention a few.

The fact that right triangles of hypothenuse AB have Property P is mentioned e.g.
in [3] and in [4] (exercise 57). As we were not able to find a work in the literature where
it is thoroughly proved, we present such a proof below Theorem 8 and analyze the cases of
equality. The proof follows the same algorithmic steps as the construction of Pólya’s space-
filling curve [5]. According to [1, 2] this observation and the result — probably for the right
isosceles triangles only — date back at least to an unpublished work of Kakutani in 1966.
Theorem 8 implies Conjecture 3 for rectangles, see Corollary 9. In [3] Kahane asked for the
value of H(K) for other sets, which lead us to formulate Conjecture 3. Theorem 12 shows
that 1/2-Hölder space-filling curves cannot help proving Property P for larger sets than
right triangles. Therefore it establishes a serious limit for the until now unique available
approach.

We refer to [6, 7] for a worst case analysis in higher dimensions and when the travel cost
is the p-power of the distance, p ̸= 2.

One of our main results is that a half-disk of diameter AB has Property P3, see Theo-
rem 15. Its proof is surprisingly difficult and given in the appendix.

2 Hamiltonian energy

We begin this section by two useful formulae. If A,B,M are three points of the plane, then
one finds

C
(
[AMB]

)
− C

(
[AB]

)
= −2

−−→
AM.

−−→
MB. (5)

This cost difference is negative if and only if |ÂMB| ⩾ π/2, i.e., if and only if M is in the
closed disk of diameter AB. As already said, this means that the cost of a path can be
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reduced by adding new points. The second formula is the following: If I is the midpoint of
A and B, then we have

C
(
[AMB]

)
= 2|MI|2 + 1

2 |AB|2. (6)

As a consequence, the level lines of the function M 7→ C
(
[AMB]

)
are circles centered at I.

A consequence of (5) is that, for n ⩾ 3, the Hamiltonian energy of an n-tuple can be
decreased just by repeating some points: Obviously we have h(A,B) = h(A,A,B) for any
two points A,B, but, already for three points A,B,C we have:

If |B̂AC| > π

2
then h(A,B,C) > h(A,A,B,C). (7)

Of course the repetition of points never increases the Hamiltonian energy. In other words,
we have for all n-tuples (A1, . . . , An):

If m < n and {A1, . . . , Am} = {A1, . . . , An} then h(A1, . . . , An) ⩽ h(A1, . . . , Am). (8)

In this context, it is useful to introduce the support {A1, . . . , An} of an n-tuple (A1, . . . , An).

Another fact is that the Hamiltonian energy of an n-tuple may be reached by Hamilto-
nian tours with crossing edges: For instance, if ε > 0 is small enough and A,B,C,D are
the points of coordinates (0, 0), (1, ε), (2, ε), and (3, 0), respectively, then h(A,B,C,D) is
close to 10, reached by the closed path [ABDCA] whose segments AC and BD cross, while
the noncrossing path [ABCDA] has a cost close to 12.

Proposition 1. Conjecture 2 is true if the n points are in convex position.

Proof. Let [A1 · · ·An] be a convex n-gon, ordered counterclockwise, and let D be the
smallest disk containing it. We have h(A1, . . . , An) ⩽ C

(
[A1 · · ·An]

)
.

We treat the case where the boundary of D contains at least three distinct points
A = Ai, B = Aj and C = Ak, 1 ⩽ i < j < k ⩽ n. If the support {A1, . . . , An} is reduced to
{A,B,C} we are done. Otherwise let Aℓ be a distinct point with, say, i < ℓ < j. Since the

angle B̂AℓA is at least π/2 and the points are in convex position, we have ̂Aℓ+1AℓAℓ−1 ⩾ π
2

and formula (5) shows that

C
(
[A1 · · ·Aℓ−1AℓAℓ+1 · · ·An]

)
⩽ C

(
[A1 · · ·Aℓ−1Aℓ+1 · · ·An]

)
.

This can be repeated until only the three pointsA,B,C remain, for which we have C
(
[ABC]

)
=

h(A,B,C).

The case of two points on the boundary of D is similar. □

The lemma below follows directly from (5) and the definition of h.

Lemma 2. Let (A1, . . . , An) be an n-tuple of the plane and M another point1 such that

|ÂiMAj | ⩽ π/2 for every i, j ∈ {1, . . . , n} such that Ai ̸= M ̸= Aj. Then we have

h(A1, . . . , An,M) ⩾ h(A1, . . . , An).

1not necessarily outside the support {A1, . . . , An} of (A1, . . . , An)
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Observe that the statement allows M to be one of the Ai; in that case we obtain equality.
This results yields a short proof of the following inequalities, valid for any bounded subset
K of the plane:

∀n ⩾ 5 H2(K) ⩽ H3(K) ⩽ H4(K) ⩽ Hn(K). (9)

Indeed, for all A,B ∈ K we have h(A,B) = h(A,A,B) ⩽ H3(K), yielding the first in-
equality. Given an arbitrary (possibly degenerate) triangle A,B,C ∈ K, one of its unsigned

angles, say |ĈAB|, is less than π/2 and we have

h(A,B,C) = h(

n – 2 times︷ ︸︸ ︷
A, . . . , A, B,C) ⩽ Hn(K),

showing thatH3(K) ⩽ Hn(K) for any boundedK. Similarly, given A,B,C,D ∈ K arbitrary,
if one, say D, is in the convex hull of the others, then we already have

h(A,B,C,D) ⩽ h(A,B,C) ⩽ H3(K) ⩽ Hn(K),

and if they are in convex position and ordered, then one of the unsigned angles, say |D̂AB|,
is at most π/2 and we have

h(A,B,C,D) = h(

n – 3 times︷ ︸︸ ︷
A, . . . , A ,B,C,D) ⩽ Hn(K)

for any n ⩾ 5, proving the last inequality. We can go one step further:

Proposition 3. For any bounded K and any n ⩾ 5, one has H5(K) ⩽ Hn(K).

Proof. Given A,B,C,D,E ∈ K arbitrary, if one of the points, say A, satisfies the same
property as M in Lemma 2, then we have

h(A,B,C,D,E) = h(A, . . . , A,B,C,D,E) ⩽ Hn(K)

as before. Otherwise the five points form a convex pentagon of vertices labelled in the order

A,B,C,D,E, and of angles on the boundary |ÊAB|, . . . , |D̂EA| all five greater than π/2.
Without loss of generality, we assume that the diagonal |EB| is (one of) the smallest among
the five diagonals. Then one checks that both costs C

(
[BCEDB]

)
and C

(
[BDCEB]

)
are

⩾ C
(
[BCDEB]

)
, hence h(B,C,D,E) is reached by the non-crossing path [BCDEB], and

we obtain

h(A,B,C,D,E) ⩽ C
(
[BCDEAB]

)
< C

(
[BCDEB]

)
= h(B,C,D,E) ⩽ H4(K) ⩽ Hn(K)

by (9). □

We have not pursued our investigations any further; a fortiori we do not know whether
the sequence

(
Hn(K)

)
n∈N is nondecreasing or not for a general K.

This kind of monotonicity becomes natural if we slightly modify our definition of Hamil-
tonian energy as follows. A covering tour on an n-tuple (A1, . . . , An) is a closed path pass-
ing through each vertex Ai at least once, i.e., a closed path with N ⩾ n vertices of the
form [Aφ(1) · · ·Aφ(N)Aφ(1)], where φ belongs to SM(N,n), the set of surjective maps from
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{1, . . . , N} onto {1, . . . , n}. The covering energy of (A1, . . . , An), denoted by s(A1, . . . , An),
is the infimum of the costs of all covering tours:

s(A1, . . . , An) = inf
N⩾n

min
φ∈SM(N,n)

C
(
[Aφ(1) · · ·Aφ(N)Aφ(1)]

)
. (10)

Since Hamiltonian tours are particular covering tours, we obviously have s ⩽ h. We also
clearly have that, for a fixed bounded set K, the sequence (Sn(K))n∈N given by

Sn(K) = sup
{
s(A1, . . . , An) ; Ai ∈ K

}
is nondecreasing. A consequence of the following result is that the infimum in (10) is
actually a minimum, reached for some N ⩽ 3n.

Theorem 4. Given a covering tour on an n-tuple (A1, . . . , An), there is a covering tour on
the same n-tuple and of same or lower cost which passes through the points at most three
times.

For a proof, we repeatedly erase redundancies using the following lemma.

Lemma 5. Let (A1, . . . , An) be an n-tuple and (B, . . . , B) an m-tuple of coinciding points,
with m ≥ 4. Then we have

h(A1, . . . , An, B,B,B) = h(A1, . . . , An,

m times︷ ︸︸ ︷
B, . . . , B). (11)

Proof. By (8) we only have to prove that the left hand side is less than or equal to the right
hand side. Consider a minimal Hamiltonian tour for the (n+m)-tuple (A1, . . . , An, B, . . . , B).
Without loss of generality we can assume that B is none of the Ai and that the tour starts
(and ends) at B and that the labels of the Ai increase. Hence the tour is of the form[

Bm1A1 · · ·An1B
m2An1+1 · · ·An2B

m3 · · ·BmkAnk−1+1 · · ·Ank
Bmk+1

]
with m1 + · · · +mk+1 = m + 1 and nk = n. In this labelling, k is the number of visits of
the tour at B and the exponents on B indicate the number of times the tour stays on B at
each visit before leaving it. Of course this tour has the same cost as the tour[

BA1 · · ·An1
BAn1+1 · · ·An2

B · · ·BAnk−1+1 · · ·Ank
B
]

(12)

If k ⩽ 3, we are done. Otherwise, we want to find a Hamiltonian tour for the (m+ k − 1)-
tuple (A1, . . . , An, B, . . . , B), i.e. which skips B once, which contains all the others vertices,
possibly in a different order, and which is of cost less than or equal to the cost of the tour
given by (12). This tour (12) is made of k so-called subtours [BAni+1 · · ·Ani+1

B]. Observe
that these subtours can be made in any order and that each one can also be made in the
reversed order without modifying the cost of the tour.

The idea is to modify the tour (12) by merging two subtours and skipping the visit at B
between them. This can be done if among the 2k ends of subtours A1, An1

, An1+1, . . . , Ank

we find two points Ai and Aj not belonging to the same subtour and such that the angle

|ÂiBAj | is at most π/2. Then by removing the edges AiB, AjB and adding the edge AiAj

we obtain the desired tour.
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For this purpose, we group these 2k points in pairs

(A1, An1
), (An1+1, An2

), . . . , (Ank−1+1, Ank
),

each pair being the pair of ends of a chain not containing B. Some of these points may
coincide, but they are different from B by assumption. We now label these 2k points
differently: by the (signed) angle they do with B, i.e. we rename them Aθ1 , . . . , Aθ2k with

0 = θ1 ≤ · · · ≤ θ2k ≤ 2π, where θi = ̂Aθ1BAθi ∈ [0, 2π[. We have
∑2k

i=1(θi+2 − θi) = 4π
where we adopt the periodic notation θ2k+1 = θ1 and θ2k+2 = θ2. If k ⩾ 4, then there
exists at least one value of i for which θi+2 − θi ≤ π/2. It follows that, among the three
points Aθi , Aθi+1 , Aθi+2 , at least two of them denoted by Ai and Aj , make an unsigned

angle |ÂiBAj | ⩽ π/2 and do not belong to the same pair. □

3 Chain energy

In this section we fix two distinct points A,B in the plane. We recall the chain energy
cAB(A1, . . . , An) associated with AB of an n-tuple (A1, . . . , An), given by (4). Analogously
to formula (8) we have for all n-tuples (A1, . . . , An):

If m < n and {A1, . . . , Am} = {A1, . . . , An} then cAB(A1, . . . , An) ⩽ cAB(A1, . . . , Am)
(13)

and similarly to Lemma 2 we have

Lemma 6. Let (A1, . . . , An) be an n-tuple of the plane and M a distinct further point such

that |N̂MP | ⩽ π/2 for every N,P ∈ {A1, . . . , An, A,B}. Then we have

cAB(A1, . . . , An,M) ⩾ cAB(A1, . . . , An).

Recall also that a bounded set K has Property Pn if for every n-tuple (A1, . . . , An) ∈ K

cAB(A1, . . . , An) ⩽ |AB|2,

and that K has Property P if it has Property Pn for all n ∈ N.

We are mainly interested in Property P, but already the properties Pn for some small
values of n are of interest.

Remarks.

1. The disk DAB of diameter AB has Property P1 but not P2. It is even maximal with
Property P1 in the following sense: If a compact K satisfies P1 (i.e. cAB(C) ⩽ |AB|2 for
every C ∈ K) then K is included in DAB . On the contrary, if CD is a different diameter of
the same disk, then cAB(C,D) > |AB|2.
2. It follows that, if K has Property P2 and contains A and B, then AB is the unique
diameter of K.

It is easy to construct bounded sets that have Property P2 but not P3. It is less easy
to find convex sets with this property.
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Theorem 7. With A = (−1, 0) and B = (1, 0), the filled ellipse E = {(x, y) ∈ R2 ; x2 +
3y2 ⩽ 1} satisfies P2 but not P3.

This ellipse satisfies also the following maximality property: If a bounded set K symmet-
ric with respect to AB satisfies Property P2, then K ⊆ E.

Proof. E is maximal. If K, symmetric with respect to AB, satisfies P2 and M = (x, y) ∈ K,
then N = (x,−y) ∈ K and, since AB ⊥ MN , we have

cAB(C,D) = C
(
[AMNB]

)
= C

(
[ANMB]

)
.

The calculation gives cAB(C,D) = 2 + 2x2 + 6y2. Then P2 for K implies that M ∈ E .
E satisfies P2. Consider two points C,D ∈ E . Without loss of generality, one can

assume that C is on the upper part of the boundary of E , D on its lower part, and that their
projections C ′ andD′ on AB are in the order AC ′D′B. In this manner we have cAB(C,D) =

C
(
[ACDB]

)
⩽ C

(
[ADCB]

)
. With f(x) =

√
1−x2

3 , these points are C = (x, f(x)) and

D = (y,−f(y)), with −1 ⩽ x ⩽ y ⩽ 1, and we have to prove that |AC|2+|CE|2+|EB|2 ⩽ 4.
After simplification, this amounts to showing that

r(x, y) := 1− 2x2 − 3x− 2y2 + 3y + 3xy ⩾ f(x)f(y).

Writing r(x, y) = 1−x2+(y−x)(3+x−2y) shows that r(x, y) ⩾ 0 and it remains to prove

that r(x, y)2 ⩾ f(x)2f(y)2 = (1− x2)(1− y2). Neglecting the term
(
(y − x)(3 + x− 2y)

)2
,

we are done if we prove that

(1− x2)2 + 2(1− x2)(y − x)(3 + x− 2y) ⩾ (1− x2)(1− y2),

i.e., after factorization, that (1− x2)(y − x)(6 + 3x− 3y) ⩾ 0.

E does not satisfy P3. Choose x = 1
4 (
√
7 − 1), y = f(x) = 1

4
√
3
(
√
7 + 1) and consider

the following points in E : C = (−x, y), D = (0,−1/
√
3) and E = (x, y). Together with A

and B, they form an M in the sense of Lemma 14, that is AE ⊥ CD and DE ⊥ CB. As
shown in the remark following it, this implies that

cAB(C,D,E) = C
(
[ADCEB]

)
= C

(
[ACDEB]

)
= C

(
[ACEDB]

)
.

The calculation then shows that cAB(C,D,E) = 20
3 −

√
7 ≈ 4.02 > 4. □

The following result is well known. Classically, its proof relies on properties of Pólya’s
space filling curves. For self-containedness we provide an elementary proof.

Theorem 8. A right triangle of hypothenuse AB has Property P.
More precisely, if the points A1, . . . , An belong to the right triangle ∆ = ABC of hy-

pothenuse AB, then cAB(A1, . . . , An) ⩽ |AB|2, with equality if and only if:

either {A1, . . . , An} ⊆ {A,B,C} or {A,B,A1, . . . , An} = {A,B,C,H}, (14)

where H is the orthogonal projection of C on AB.
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Proof. We assume that all the Ai are distinct, see (13). Our proof relies on a dyadic
partition of ∆. We call ∆0 the (closed) triangle AHC and ∆1 is CHB. Note that both
triangles are similar to ABC, that ∆ = ∆0 ∪∆1, and that ∆0 ∩∆1 = CH. This operation
can be iterated so that one gets 2k similar triangles after k iterations. Since the diameter
of the largest triangle of generation k tends to zero as k tends to infinity, we can use this
procedure to separate any finite family F ⊂ ∆ of distinct points. For k large enough, there
is an injective map from F to the set of triangles of generation k — possibly not unique
since some points may lie on border segments like CH.

We prove the result by induction. Let (Pk) be the following property:

For every right triangle ∆ = PQR with hypothenuse PQ and any finite subset E =
{A1, . . . , An} of ∆ such that E∗ := E \{P,Q} can be separated by the triangles of generation
k, we have cPQ(A1, . . . , An) ⩽ |PQ|2, and equality occurs only in one of the situations
analogous to (14).

Note that the statement to prove corresponds to (Pk) for every k ∈ N.
Property (P0): There is one triangle, namely ∆ = PQR, so that E∗ must have cardinality
0 or 1. In the less trivial case, the equality comes from (5) and the case of equality occurs
if and only if the point is R. This proves (P0).

(Pk) ⇒ (Pk+1): Fix k ∈ N, assume Property (Pk). Let us prove (Pk+1) for the triangle
∆ = ABC. Let E = {A1, . . . , An} be a finite set of points in ∆ such that the points of E∗

can be injectively mapped to the 2k+1 triangles of generation k+1. We separate E∗ in two
disjoint subsets E∗

0 ⊆ ∆0 and E∗
1 ⊆ ∆1 (if Ai is on CH, we put it indifferently in E0 or in

E1). Applying (Pk) for the triangles ACH and CBH, respectively, we obtain

cAC(E∗
0 ) ⩽ |AC|2 and cCB(E∗

1 ) ⩽ |CB|2.

Therefore there exists a chain from A to B going through C,A1, . . . , An with chain energy
at most |AC|2 + |CB|2 = |AB|2. By Lemma 6 we now erase point C from the chain.

It remains to prove the cases of equality. This can only happen when the equality cases
occur both in ∆0 and ∆1. Therefore, using (Pk) we obtain a finite number of configurations
where equality may occur, with points belonging to {A,B,C,H,H0, H1}, where H0 and
H1 are the orthogonal projections of H on AC and CB, respectively. Now a case-by-case
analysis shows that only the cases listed in the statement yield equality. □

Corollary 9. Let R be a rectangle in the plane.

a. We have Hn(R) = H2(R) for all n > 2.

b. The n-tuples that realize H2(R) have a support of cardinality at most 5. More precisely,
an n-tuple (A1, . . . , An) ∈ Rn satisfies h(A1, . . . , An) = H2(R) if and only if its support
{A1, . . . An} is of cardinality at most 5 and, either is made of four, three or two opposite
vertices of R, or R is a square and this support is made of all the four vertices plus the
center of R.

Proof. a. Let A,B,C,D denote the vertices of R, ordered counterclockwise, and consider
an n-tuple (A1, . . . , An) of points of R. By Lemma 2 we have

h(A1, . . . , An) ⩽ h(A1, . . . , An, A) ⩽ h(A1, . . . , An, A,C).
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In other words, we can assume without loss of generality that A and C are among the points
Ai. Let I ⊆ {1, . . . , n} be such that i ∈ I ⇔ Ai ∈ ABC, and set J = {1, . . . , n} \ I (thus
i ∈ J ⇔ Ai ∈ ACD \ AC). Then we have concatenating chains realizing the minima and
using Theorem 8

h(A1, . . . , An, A,C) ⩽ cAC(Ai ; i ∈ I) + cCA(Ai ; i ∈ J) ⩽ 2|AC|2 = h(A,C).

b. Let E be the orthogonal projection of B on AC and F the orthogonal projection of
D on AC. If we have equality, then we must have cAC(Ai ; i ∈ I} = cCA(Ai ; i ∈ J} =
|AC|2, hence by the case of equality in Theorem 8, the support {Ai ; i ∈ I} is included in
{A,B,C,E} and the support {Ai ; i ∈ J} is empty or reduced to {D}.

If E ̸= F then none of the Ai, i ∈ I, can be E, because one of the unsigned angles

|ÂED| or |ĈED| is obtuse. Hence all the Ai are concentrated at two, three, or four vertices
of R, and at least two of these vertices are opposite.

If E = F , i.e. if R is a square, then the case that some of the Ai are in E may occur,
but in that case all the four vertices are occupied. □

Corollary 10. Conjecture 2 is true if three or four of the points Ai contain all points in
their convex hull.

Proof. We give the proof for four points; the case of three points is easier. Let A,B,C,D
denote these points, in convex position and ordered counterclockwise. Without loss of

generality, we assume that ĈBA ⩾ π/2 and that D̂CA ⩾ D̂AC. We consider two cases.

If D̂CA ⩽ π/2, then we split the quadrilateral ABCD in three right or obtuse triangles
ABC, CD′D and DD′A, where D′ is the orthogonal projection of D on AC. Let

I1 =
{
i ∈ {1, . . . , n} ; Ai ∈ ABC

}
,

I2 =
{
i ∈ {1, . . . , n} ; Ai ∈ CD′D \ CD′} and

I3 = {1, . . . , n} \ (I1 ∪ I2).

Using Theorem 8, we obtain cAC(Ai ; i ∈ I1) ⩽ |AC|2, cCD(Ai ; i ∈ I2) ⩽ |CD|2 and
cDA(Ai ; i ∈ I3) ⩽ |DA|2, hence h(A1, . . . , An) ⩽ h(A,C,D).

If D̂CA > π/2, then we use that the triangle ACD is obtuse in C and we split the quadri-
lateral in two right or obtuse triangles ABC and DCA. With I1 =

{
i ∈ {1, . . . , n} ; Ai ∈

ABC
}
and I2 = {1, . . . , n} \ I1, we obtain by Theorem 8

cAC(Ai ; i ∈ I1) ⩽ |AC|2 and cDA(Ai ; i ∈ I2) ⩽ |DA|2,

hence

h(A1, . . . , An) ⩽ cAC(Ai ; i ∈ I1) + |CD|2 + cDA(Ai ; i ∈ I2) ⩽ h(A,C,D) < h(A,D).

Now the smallest disk containing the n-tuple contains two or three of the points A,C,D in
its boundary and no other Ai. □

Surprisingly we were not able to confirm Conjecture 3 for all quadrilaterals.
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Corollary 11. Conjecture 1 is true modulo a factor 2: Among any n-tuple (A1, . . . , An),
n > 3, there are two or three points Ai, Aj , Ak (with possibly i = j) such that

h(A1, . . . , An) ⩽ 2h(Ai, Aj , Ak).

Proof. Let D be the smallest disk containing all the Ai and let K be any circumscribing
square of D. There are two or three points among the Ai, say Aj , Ak, Aℓ with possibly
j = k, which are on the boundary of D and which contain the center of D in their convex
hull. We have h(Aj , Ak, Aℓ) ⩾ 2d2, where d is the diameter of D: Indeed, if B is on the
boundary of D such that AjB is a diameter of it, then h(Aj , Ak, Aℓ) = C

(
[AjAkAℓ]

)
≥

C
(
[AjAkBAℓ]

)
= 2d2. We conclude using that h(A1, . . . , An) ⩽ 4d2 by Corollary 9. □

The following result states that space filling curves cannot help prove Property P for sets
larger than right triangles, see the comments in Introduction. In its proof, a construction
of Pólya’s curve for a given right triangle is derived without going into details.

Theorem 12. Suppose ∆ is a right triangle with hypothenuse AB and that ∆ ⊆ N . Suppose
there exists a surjective mapping f : [0, 1] → N such that f(0) = A, f(1) = B and

|f(t)− f(s)|2 ≤ |AB|2|t− s| for 0 ≤ s, t ≤ 1. (15)

Then ∆ = N .

Proof. Observe that f is continuous by (15). Without loss of generality, we can assume
that |AB| = 1. Suppose that C is the third vertex of ∆ and that s0 ∈ [0, 1] with f(s0) = C.
Then s0 ≥ |AC|2 and 1 − s0 ≥ |CB|2 by (15). Since |AC|2 + |CB|2 = |AB|2 ≤ 1, this
implies s0 = |AC|2.

Next let H denote the projection of C onto AB. We want to determine two values s11
and s21, s

1
1 < s0 < s21 such that f(si1) = H. Observe that f(s) must be in the disk DBC of

diameter BC if s0 ⩽ s ⩽ 1 because by (15) we have

|Bf(s)|2 + |Cf(s)|2 ⩽ 1− s+ s− s0 = 1− s0 = |BC|2.

Now we can choose a sequence Pn in ∆ \ DBC tending to H and tn with f(tn) = Pn. As
shown before, we must have 0 ≤ tn < s0.

With δn = |HPn| and s11 = |AH|2 we find on the one hand using (15)

tn ≥ |APn|2 ≥ (|AH| − δn)
2 ≥ s11 − 2δn|AH|,

on the other hand again using (15)

s0 − tn ≥ |CPn|2 ≥ (|CH| − δn)
2 ≥ s0 − s11 − 2δn|CH|

and hence tn ≤ s11 + 2δn|CH|. This shows that tn tends to s11 as δn → 0, i.e. Pn → H.
By the continuity of f , we find f(s11) = lim f(tn) = H. In a symmetric way, we prove that
f(s21) = H where s21 = 1− |BH|2 ∈ [s0, 1].

Continuing in this way to the projections H0, H1 of H onto AC and BC, respectively,
and to their projections etc. , we find a dense subset of [0, 1] mapped onto a dense subset
of ∆, on which f is uniquely determined. By the continuity of f , it is uniquely determined,
we have f([0, 1]) ⊆ ∆ and thus ∆ = N by the assumed surjectivity. □
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4 The half-disk and the disk

We want to prove Conjecture 2 in the very special case of six points, five of which are in
convex position and two of which form a diameter of the smallest disk containing them.
For this, we fix A,B in the plane and will need that a half-disk of diameter AB satisfies
Property P3. As a warm-up, we first prove that such a half-disk has Property P2.

Proposition 13. Let H be a half-disk of diameter AB. Then for all C,D ∈ H one has
cAB(C,D) ⩽ |AB|2, with equality if and only if:

- either the support {A,B,C,D} is of cardinality at most 3 and is included in the half-

circle
⌢
AB bounding H,

- or, among C and D, one point belongs to
⌢
AB and the other one is its orthogonal

projection on AB.

Proof. Let C ′ and D′ be the orthogonal projections of C and D on AB. Without loss
of generality, we assume that the points are ordered A,C ′, D′, B on the line AB (possibly

C ′ = D′), and that |CC ′| ⩽ |DD′|. Then we have |AC|2 + |CD|2 = |AD|2 − 2
−→
AC.

−−→
CD ⩽

|AD|2 and |AD|2 + |DB|2 = |AB|2 − 2
−−→
AD.

−−→
DB ⩽ |AB|2, hence

cAB(C,D) = |AC|2 + |CD|2 + |DB|2 ⩽ |AB|2. (16)

Moreover, equality in (16) occurs if and only if
−→
AC.

−−→
CD =

−−→
AD.

−−→
DB = 0, i.e.

- either C ∈ {A,D} and AD ⊥ DB (or D ∈ {A,B}), i.e. D is on the half-circle
⌢
AB,

- or AC ⊥ CD (hence C = C ′ = D′) and D is on
⌢
AB. □

Remark. A half-disk H of diameter AB is maximal for inclusion among subsets satisfying
P2: If a subset K of the plane contains H and satisfies P2, then K = H.

Such a half-disk is also the largest element among subsets satisfying P2 and entirely on
one side of the straight line (AB): Any subset of a closed half-plane bounded by (AB) and
satisfying P2 is contained in the corresponding half-disk of diameter AB.

An interesting question would be to describe all subsets satisfying this relative maxi-
mality property for P2. In particular we did not find such a maximal subset for P2 which
also satifies P3, except the above half-disks.

We will go one step further and prove that a half-disk of diameter AB satisfies Property
P3. To this purpose we will use the following lemma, which is of interest by itself.

Lemma 14. Let H be a half-disk of diameter AB.

a. For every point D on the segment AB, different from A and B, there exists a unique

pair of points C,E on the half-circle
⌢
AB bounding H such that AE ⊥ CD and BC ⊥ DE.

Likewise, for every E ∈
⌢
AB \ {A,B} there exists a unique pair (C,D) ∈

⌢
AB×AB such

that AE ⊥ CD and BC ⊥ DE.

Such a polygonal line [ACDEB] will be called an M in the rest of the article.

b. If [ACDEB] is an M, then cAB(C,D,E) = |AB|2.
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Remark. Since AE ⊥ CD, one has |AC|2+ |DE|2 = |AD|2+ |CE|2: Indeed, if I denotes the
intersection point of AE and CD and a, c, d, e denote the distances |AI|, |CI|, |DI|, |EI|,
respectively, then both sides are equal to a2 + c2 + d2 + e2. This implies that the polygonal
line [ACDE] has the same cost as [ADCE]. The same holds for the lines [CDEB] and
[CEDB]. As a consequence, the minimum cAB(C,D,E) is reached by the three polygonal
lines [ADCEB], [ACDEB] and [ACEDB].

A

C

D BF

E

Figure 1: Points satisfying the conditions of Lemma 14

Proof. a. Observe that the conditions AE ⊥ CD and BC ⊥ DE are equivalent to

BE ∥ CD and AC ∥ DE because the angles ÂCB and ÂEB are right angles by Thales’
Theorem.

We begin with proving uniqueness for the first statement. Suppose that BE ∥ CD and
AC ∥ DE. Then let F denote the intersection of the straight line (AB) and the parallel
to AE through C. As all of their corresponding edges and diagonals are parallel, the
polygons ADEB and FACD are similar. Hence |FA|/|AD| = |AD|/DB| which determines

F uniquely. Moreover the angle F̂CD is a right angle as ÂEB is, and therefore C is on the

half-circle
⌢
FD. This determines C uniquely. Then E is determined as the unique point on

⌢
AB such that DE ∥ AC.

Given A,D,B, clearly the points F,C,E constructed as above give similar polygons
ADEB and FACD and therefore BE ∥ CD and AC ∥ DE.

Now, as D moves continuously and strictly monotonically from A to B on the segment

AB, C and E move continuously and strictly monotonically from A to B on the arc
⌢
AB.

This follows from the above construction. This proves the second statement.

b. Put u =
−→
AC, v =

−−→
CD, w =

−−→
DE and x =

−−→
EB. Since the triangles ACD and DEB are

similar, there exists λ ∈ R such that w = λu and x = λv and hence v.w = u.x. One has

|AB|2 = ∥u+v+w+x∥2 = ∥u∥2+∥v∥2+∥w∥2+∥x∥2+2
(
u.(v+w+x)+v.w+v.x+w.x

)
,

but u.(v +w+ x) =
−→
AC.

−−→
CB = 0 and v.w+ v.x+w.x = (u+ v +w).x =

−→
AE.

−−→
EB = 0, thus

|AB|2 = ∥u∥2 + ∥v∥2 + ∥w∥2 + ∥x∥2 = cAB(C,D,E). □

Theorem 15. A half-disk H of diameter AB has Property P3. In particular, let C,D,E ∈
H\{A,B} be three distinct points, such that their orthogonal projections on AB are ordered
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A,C ′, D′, E′, B. Then cAB(C,D,E) ⩽ |AB|2, with equality if and only if [ACDEB] is an
M.

Remark: The cases card{A,B,C,D,E} < 5 are taken care of in Proposition 13.

It seems natural that the worst case is when the three polygonal lines [ADCEB],
[ACDEB] and [ACEDB] have the same cost, i.e. when [ACDEB] is an M, in which
case we have equality by Lemma 14. Curiously, we haven’t found a simple proof of this
result. For this reason we give the lengthy proof in an appendix.

We conjecture that a half-disk has not only Property P3:

Conjecture 5. A half-disk H of diameter AB satisfies Property P. Moreover, if points
A1, . . . , An belong to H and are such that cAB(A1, . . . , An) = |AB|2 then the support S =
{A,B,A1, . . . , An} has cardinality at most 5 and either S = {A,B}, or S = {A,B,C} with

C ∈
⌢
AB, or S = {A,B,C,D} with C ∈

⌢
AB and D is the orthogonal projection of C on

(AB), or the five points form an M.

Theorem 15 immediately yields the following

Corollary 16. Conjecture 2 is true for six points in a disk, two of which form a diameter.

Proof. Let AB be a diameter of a disk D and C,D,E, F ∈ D be further points. If all
the four points C,D,E, F are in the same (closed) half-disk of diameter AB then, by
Proposition 13, one has h(A,B,C,D,E, F ) ⩽ cAB(C,D) + cBA(E,F ) ⩽ 2|AB|2. It is the
same if the four points C,D,E, F are in pairs on each half-disk. If one point, say F , is
in one half-disk and the three others in the other one then one has h(A,B,C,D,E, F ) ⩽
cAB(C,D,E) + cBA(F ) ⩽ 2|AB|2 by (5) and Theorem 15. □

Another result concerning disks is the following.

Theorem 17. Consider n ≥ 5 and A1, . . . , An on a circle K with center O. Then Conjec-
ture 2 holds for {A1, . . . , An, O}.

Proof. If A1, . . . , An are contained in a half-circle of K then {A1, . . . , An, O} are in a convex
position and Conjecture 2 holds in this case by Proposition 1.

Now we assume that O is in the convex hull of A1, . . . , An. Therefore we can choose
Ai, Aj , Ak such that O is in the triangle AiAjAk and, as indicated in the proof of Corollary
11, we have h(Ai, Aj , Ak) ≥ 8r2, where r denotes the radius of K.

We can assume that A1, . . . , An are ordered. Put φi = ̂AiOAi+1 with An+1 = A1. If
any of the φi ≥ π

2 , say φn, then

h(A1, . . . , An, O) ⩽ C
(
[A1 · · ·AnOA1]

)
≤ C

(
[A1 · · ·AnA1]

)
and we can conclude with Proposition 1.

So we can assume from now on that all the φi <
π
2 . Finally, we can assume without loss

of generality that φn is the largest of them. Of course φ1 + . . .+ φn = 2π.
Now we calculate |AiAi+1| = 2r sin

(
φi

2

)
and obtain

h(A1, . . . , An, O) ⩽ C
(
[A1 · · ·AnOA1]

)
= 2r2 +

n−1∑
i=1

4r2 sin2
(φi

2

)
. (17)
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It is sufficient to show that the right hand side is at most 8r2, or equivalently

n−1∑
i=1

2 sin2
(φi

2

)
≤ 3. (18)

Now 2 sin2(x2 ) = 1− cosx is convex on the interval [0, π
2 ] and we can use that

f(x) + f(y) ≤ f(a) + f(b), if f is convex on [a, b], x, y ∈ [a, b] and x+ y = a+ b. (19)

Let m denote the unique integer such that mφn ≤ 2π < (m+1)φn. Since
2π
n ≤ φn < π

2 ,
we have 4 ≤ m ≤ n. We now use that φ1 + . . . + φn−1 = 2π − φn and write 2π − φn =
(m− 1)φn + rn + (n−m) · 0, where rn = 2π −mφn ∈ [0, φn[.

We use (19) repeatedly in the following way. If two of the φi are strictly between 0 and
φn, say φ1 and φ2, then we put a = 0, b = φ1 +φ2 if φ1 +φ2 ≤ φn, but a = φ1 +φ2 −φn,
b = φn if φ1 + φ2 ≥ φn. In both cases, we have f(φ1) + f(φ2) ≤ f(a) + f(b) and therefore

n−1∑
i=1

2 sin2
(φi

2

)
≤

n−1∑
i=1

2 sin2
(
φ̃i

2

)
,

where φ̃1, . . . φ̃n−1 denote a, b, φ3, . . . , φn−1 in a different way. Observe that at most n− 2
of the φ̃i are strictly between 0 and φn. This procedure can be repeated with the φ̃i, etc.
until we have

n−1∑
i=1

2 sin2
(φi

2

)
≤

n−1∑
i=1

2 sin2
(
φ̃i

2

)
,

where
∑n−1

i=1 φ̃i = 2π − φn, 0 ≤ φ̃i ≤ φn and at most one of the φ̃i is strictly between 0
and φn. By the choice of m, we then have that m − 1 of the φ̃i equal φn, n −m of them
vanish and the remaining one equals rn.

Thus we have shown that

n−1∑
i=1

2 sin2
(φi

2

)
≤ 2 sin2

(rn
2

)
+ 2(m− 1) sin2

(φn

2

)
. (20)

It remains to estimate g(φ) = 2(m − 1) sin2
(
φ
2

)
+ 2 sin2

(
2π−mφ

2

)
on the interval I =

] 2π
m+1 ,

2π
m ]. By the convexity of f(x) = 2 sin2(x2 ) on [0, φn], the maximum of g can only be

attained at the boundaries of I and we have that

n−1∑
i=1

2 sin2
(φi

2

)
≤ max

(
2m sin2

(
π

m+ 1

)
, 2(m− 1) sin2

( π

m

))
. (21)

Thus it remains to show that 2(m−1) sin2
(
π
m

)
≤ 3 for m ⩾ 4. For m = 4 we have equality;

for m = 5 we obtain 8 sin2
(
π
5

)
= 5−

√
5 ⩽ 3; for m = 6 we have 10 sin2

(
π
6

)
= 5

2 ⩽ 3. For

larger m, we use that sinx ≤ x for nonnegative x. Therefore it is sufficient to have 2π2

m ≤ 3,
which is the case if m ⩾ 7. □
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Appendix: Proof of Theorem 15

Let A,B,C,D,E be as in the statement, i.e., with the projections on AB ordered A,C ′, D′,
E′, B. By compactness of H3 and by continuity of the map (C,D,E) 7→ cAB(C,D,E),
there exists (at least) a configuration (C,D,E) that realizes the maximum of cAB(C,D,E)
(possibly with coinciding points).

By contradiction, assume that cAB(C,D,E) > |AB|2. By Proposition 13 the five points
must be all distinct, and by Theorem 8 the convex hull ABCDE is not a triangle, because
this triangle would be right or obtuse. As a consequence, among C,D and E, at least two
of them are extremal points of ABCDE.

We first prove that, for this worst configuration, the three unsigned angles |ÂCD|,
|ÊDC|, and |D̂EB| are less than a right angle.

If the angle |ÂCD| equals or exceeds a right angle, then we would have

cAB(C,D,E) ⩽ C
(
[ACDEB]

)
⩽ C

(
[ADEB]

)
⩽ max

{
C
(
[ADB]

)
, C

(
[AEB]

)}
⩽ |AB|2,

contradicting our assumption. The third inequality above comes from the fact that one of

the angles |D̂EB| (if |EE′| ⩽ |DD′|) or |ÂDE| (if |DD′| ⩽ |EE′|) is at least π/2. The

cases |ÊDC| ⩾ π/2 and |D̂EB| ⩾ π/2 are similar.
It follows that |DD′| < max

(
|CC ′|, |EE′|

)
, hence C and E are extremal points of

ABCDE. In particular there exists a straight line d passing through C such that all four
points A,B,D,E are on the same side of d. Now the straight line orthogonal to d and

passing through C meets the half-circle
⌢
AB at some point C̃ satisfying |C̃X| ⩾ |CX| for

all X ∈ {A,B,D,E}, with (at least) one equality only for C̃ = C, hence cAB(C,D,E) ⩽
cAB(C̃,D,E), with equality if and only if C̃ = C. In other words, in a worst configuration,

C is on the half-circle
⌢
AB; the same holds for E.

Set

C1 = C
(
[ADCEB]

)
, C2 = C

(
[ACDEB]

)
, C3 = C

(
[ACEDB]

)
.

Thus we have cAB(C,D,E) = min(C1, C2, C3).
We now prove that D is on the segment AB. Indeed, let D′ denote the orthogonal

projection of D on AB and let C′
i denote the quantity analogous to Ci with D′ instead of

D. Then we claim that C′
i ⩾ Ci, with one or more equalities if and only if D = D′. For

i = 2, this comes from |CD′| ⩾ |CD| and |D′E| ⩾ |DE|, yielding C
(
[CDE]

)
⩽ C

(
[CD′E]

)
,

with equality only if D = D′. For i = 1, this comes from |DD′| < |CC ′| and, using (6),
C′
1 − C1 = 2

(
|ID′|2 − |ID|2

)
⩾ 0, where I is the midpoint of A and C, with equality only

for D = D′. The case i = 3 is similar.
At this point, several cases can occur: The identity cAB(C,D,E) = min(C1, C2, C3) can

be reached by one, two, or all three values of the Ci.
If C1 = C2 = C3, then we obtain that AE ⊥ CD and BC ⊥ DE, i.e., the configuration

is an M, yielding cAB(C,D,E) = |AB|2 by Lemma 14, a contradiction.
If C1 < min(C2, C3), then we slightly move D in the direction B. This slightly increases

both AD and DC, hence C1 slightly increases, and C2 and C3 change only slightly, hence
cAB(C,D,E) slightly increases, contradicting the maximality of cAB(C,D,E). In the same
way, one cannot have C3 < min(C1, C2).
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A

C

D BC ′

E

E ′

Figure 2: A current configuration of the five points

If C2 < min(C1, C3) then we also move D to reach the contradiction, but the move
depends on the respective positions of the points: Let J be the midpoint of CE, and J ′ its
orthogonal projection on AB. If D is between A and J ′, then by slightly moving D towards
A we increase the distance |DJ |, hence we slightly increase C

(
[CDE]) by (6). In this

manner C2 slightly increases, C1, C3 slightly change and once again cAB(C,D,E) increases,
a contradiction. If D is between J ′ and B, then we move D towards B. If D = J ′, both
directions increase cAB(C,D,E).

As a consequence, in a worst configuration, exactly two of the values C1, C2, C3 are equal
and the third one is greater. The cases C1 = C2 < C3 and C2 = C3 < C1 are symmetric and
will be treated afterwards.

We now treat the case C1 = C3 < C2 and we will prove that cAB(C,D,E) ⩽ |AB|2,
yielding a contradiction in this case. Without loss of generality, we can assume that |AD| ⩽
|DB|. Observe that C1 < C2 implies

−→
AE.

−−→
DC > 0. (22)

We have |AB|2 −C1 = 2
(−−→
AD.

−−→
DC +

−−→
CE.

−−→
EB

)
and |AB|2 −C3 = 2

(−−→
ED.

−−→
DB+

−→
AC.

−−→
CE

)
, and

these quantities are equal. We also have
−→
AC.

−−→
CE =

−−→
CE.

−−→
EB, because

−→
AC +

−−→
BE = 2

−→
OJ ,

where O is the midpoint of AB and J the midpoint of CE, and
−→
OJ ⊥

−−→
CE. It follows that

−−→
AD.

−−→
DC =

−−→
ED.

−−→
DB (23)

Let us fix coordinates on the straight line (AB), with origin O (the midpoint of AB),
such that the abscissa of A is −1, hence the abscissa of B is 1. Let x, d, y denote the

abscissae of C,D,E respectively. In this manner we have
−−→
AD.

−−→
DC = (1 + d)(x − d) and

−−→
ED.

−−→
DB = (d− y)(1− d). Then (23) implies

y = ax+ b, with a = −1 + d

1− d
and b =

2d

1− d
. (24)

Now Lemma 14 provides a unique pair of points C∗ and E∗, of abscissae denoted by x∗ and
y∗ respectively, such that AE∗ ⊥ C∗D and BC∗ ⊥ DE∗.

Because of (22) we have x∗ < x: Indeed, if x increases to x̃ then y decreases to ỹ by

(24). Hence the angle ĈDC̃ < 0 whereas ÊAẼ > 0. So the angle between
−→
AẼ and

−−→
DC̃
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is smaller than the one between
−→
AE and

−−→
DC. As the angle between

−−→
AE∗ and

−−→
DC∗ is a

right angle, the one between
−→
AE and

−−→
DC is smaller than a right angle if x > x∗ and larger

than a right angle if x < x∗. This means that
−→
AE.

−−→
DC > 0 if x > x∗ and < 0 if x < x∗.

Therefore (22) implies x > x∗.

Set f(x) = |AB|2 −C1, with y given by (24). Since we have assumed |AD| ⩽ |DB|, this
function is defined at least in the interval ] − 1, d]. We have f(d) = 0 by Proposition 13
and f(x∗) = 0 by Lemma 14. It remains to prove that f(x) > 0 if x∗ < x < d. For any
u ∈ [−1, 1], we use the notation r(u) =

√
1− u2. We have

1

2
f(x) =

−−→
AD.

−−→
DC +

−→
AC.

−−→
CE

= (1 + d)(x− d) + (1 + x)(y − x) + r(x)
(
r(y)− r(x)

)
= −(1 + d+ d2) + dx+ y + xy + r(x)r(y),

where y is given by (24). Hence we have f(x) > 0 if and only if

r(x)r(y) > αx2 + βx+ γ, (25)

where α, β, γ are the coefficients of 1 + d+ d2 − dx− y − xy, considered as a polynomial of

degree 2 in x. One finds α = −a =
1 + d

1− d
, β = −d− a− b = 1− d, and γ = 1+ d+ d2 − b =

1− 2d− d3

1− d
. The inequality (25) will be satisfied if we prove that the polynomial

P (x) :=
(
r(x)r(y)

)2 − (αx2 + βx+ γ)2

is positive on the open interval ]x∗, d[ . We already have P (x∗) = P (d) = 0. We also have
P (−1) < 0 because limx→−1 f(x) = −|AD|2 < 0.

Denoting P = a0 + · · · + a4x
4, one finds a4 = a2 − α2 = 0 (i.e. P is of degree at most

3) and a3 = 2ab− 2αβ = 2a(b+ 1− d) = −2
(1 + d)(1 + d2)

(1− d)2
< 0.

As a consequence we obtain lim
x→−∞

P (x) = +∞. Since P (−1) < 0, the third root of P

is outside [x∗, d], and we have P > 0 on ]x∗, d[ .

Now we treat the last case C1 = C2 < C3. We still use the same notations: A =
(−1, 0), O = (0, 0), B = (1, 0), C = (x, r(x)), D = (d, 0), and E = (y, r(y)), with −1 < x <
d < y < 1.

Let us fix E. Lemma 14 gives C∗ ∈
⌢
AB and D∗ ∈ AB unique, of abscissae denoted by

x∗ and d∗ respectively, such that AE ⊥ C∗D∗ and BC∗ ⊥ D∗E.
The assumption C1 = C2 gives AE ⊥ DC, i.e. (y + 1)(x− d) + r(x)r(y) = 0, hence

d = x+ λr(x), with λ =
r(y)

1 + y
=

d∗ − x∗

r(x∗)
. (26)

The last equality comes from CD ∥ C∗D∗.
The assumption C1 = C2 < C3 implies −1 < x < x∗ and −1 < d < d∗. The assumption

C2 < C3 gives
−−→
CB.

−−→
DE > 0. This implies that the angle ∠

(−−→
CB,

−−→
DE

)
is less than π/2. It
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follows that −1 < x < x∗ and −1 < d < d∗: Indeed, if x < x1 and d < d1 are such that

CD ∥ C1D1 (in order to keep C1 = C2) then ∠
(−−→
CB,

−−→
DE

)
< ∠

(−−→
C1B,

−−→
D1E

)
.

As before, we put f(x) = |AB|2 − C1 with d given by (26). We have limx→−1 f(x) = 0,
and by Lemma 14 we have f(x∗) = 0. It remains to prove that f(x) > 0 if −1 < x < x∗.

As before, we have

1

2
f(x) =

−−→
AD.

−−→
DC +

−→
AC.

−−→
CE = (1 + d)(x− d) + (1 + x)(y − x) + r(x)

(
r(y)− r(x)

)
.

One calculates using (26):

f(x) =
2

1 + y

(
(1− y)x2 + (y2 − 1)x+ (y − 1)(y + 2) + (y − x)r(x)r(y)

)
and we are done if we prove that

Q(x) :=
(
(y − x)r(x)r(y)

)2 − (
(1− y)x2 + (y2 − 1)x+ (y − 1)(y + 2)

)2
> 0

for all x ∈ ]−1, x∗[ . We consider Q as a polynomial in x (of degree 4) and y as a parameter.
Since we have Q(−1) = 0 and also Q(x) = 0 if y = 1, it follows that x+1 and y− 1 are

factors of Q. One finds Q(x) = 2(x+ 1)(y − 1)R(x) with

R(x) = x3 − (2 + y)x2 + y(y + 2)x+ 2− 2y2 − y3 (27)

and it remains to prove that R < 0 on ]−1, x∗[ . We know that R(x∗) = 0. The computation
gives R(−1) = −(1 + y)3 < 0, R(y) = 2(1 − y2) > 0, and R′′(x) = 2

(
3x − (2 + y)

)
, which

vanishes at 1
3 (y + 2) > y. As a consequence, R is concave on [−1, y]. Since x∗ < y and

R(x∗) < R(y), there exists, by the mean value theorem, a c between x∗ and y such that

R′(c) = R(y)−R(x∗)
y−x∗ > 0. Hence the function R′, decreasing on [1, y], is positive on [1, c] and

therefore R is increasing on [−1, x∗]. Since R(x∗) = 0, we have R < 0 on ]− 1, x∗[ . □
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d’aujourd’hui, Cassini, Paris, 4 (2000), 1–26.

[4] D. J. Newman, A Problem Seminar, Problem Books in Math., Springer Verlag, New
York (1982).



222 A quadratic version of the traveling salesman problem
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(2) Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
and

Université de Strasbourg, France

E-mail: Nicolas.Juillet@uha.fr

(3) Institut de Recherche Mathématique Avancée, UMR 7501,
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