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Abstract

In this paper the problem of minimizing the vertex-degree function index Hf (G)
for k-generalized quasi-trees of order n is solved for k ≥ 1 and n ≥ 3k if the function f
is strictly increasing and strictly convex. The extremal graph is a cycle Cn for k = 1
and n ≥ 3. For k = 2 and n ≥ 6 there are two families of extremal graphs depending
upon the case when the inequality f(3) + 3f(1) < 4f(2) is fulfilled or not. For k ≥ 3
and n ≥ 3k there is a single family of extremal graphs and the number of pairwise
non-isomorphic graphs of this family equals 1 + ⌊(n− 3k)/2⌋.
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1 Introduction

Let G be a simple graph. By V (G) and E(G) we denote the vertex set and the edge set of
G, respectively. For any x ∈ V (G), we denote by dG(x) the degree of x, i.e., the number
of neighbors of x in G. If the graph G is clear from the context, then we use d(x) instead
of dG(x). A vertex with degree one will also be referred as a pendant vertex. Suppose
that V (G) = {v1, v2, . . . , vn} and the degree of vertex vi equals di for i = 1, 2, . . . , n, then
π = (d1, d2, . . . , dn) is called the degree sequence of G. We always will enumerate the degrees
in non-increasing order, i.e., d1 ≥ d2 ≥ . . . ≥ dn. Pn and Cn will denote the path and cycle
on n vertices.

For S ⊂ V (G), the subgraph induced by S is denoted G[S]. For a graph G and a subset
X of V (G), G − X is the graph obtained from G by removing the vertices of X and all
edges incident to any of them. In particular, when X consists of only one vertex v, G−{v}
is always abbreviated to G− v. Similar notation is G− uv, where uv ∈ E(G).

A unicyclic graph G of order n is connected and has n edges. It consists of a cycle Cr,
where 3 ≤ r ≤ n and some vertex-disjoint trees having each a vertex common with Cr. A
bicyclic graph G of order n is a connected graph of size |E(G)| = n+1. It has two linearly
independent cycles which have a common vertex or a common path Pa with a ≥ 2 or they
are connected by a path Pb with b ≥ 2. The quasi-tree is a connected graph G in which
there exists a vertex v ∈ V (G) such that G − v is a tree. Xu et al. generalized in [14] the
concept of quasi-tree to k-generalized quasi-tree as:
For any integer k ≥ 1, the connected graph G is called a k-generalized quasi-tree, if there
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exists a subset Vk ⊆ V (G) with cardinality k such that G−Vk is a tree but for every subset
Vk−1 of cardinality k − 1 of V (G), the graph G − Vk−1 is not a tree. In [14], the authors
pointed out that any tree is a quasi-tree since the deletion of any pendant vertex will produce
another tree. Thus, they called any tree a trivial quasi-tree, and other quasi-tree graphs as
non-trivial quasi-trees. In what follows, we call the vertex set Vk as a k-quasi-vertex set,
and we use the symbol T k

n to denote the class of k-generalized quasi-trees with n vertices.
For other notations and definitions in graph theory, we refer to [12].
The first Zagreb index M1(G) [3] is defined as M1(G) =

∑
v∈V (G) d

2(v). The general

first Zagreb index (sometimes referred as ”zeroth-order general Randić index” [4]), denoted
by 0Rα(G) was defined [5] as 0Rα(G) =

∑
v∈V (G) d(v)

α, where α is a real number, α ̸∈
{0, 1}. For α = 2 it is the first Zagreb index M1(G).

Todeschini et al. [7] introduced a variant of Zagreb indices which are called the first
and second multiplicative Zagreb indices, and they are defined as:

Π1(G) =
∏

u∈V (G)

d(u)2, Π2(G) =
∏

uv∈E(G)

d(u)d(v) =
∏

u∈V (G)

d(u)d(u).

A generalized form of multiplicative Zagreb indices, which are called the first and second
general multiplicative Zagreb indices was proposed by Vetŕık and Balachandran [9]. For a
graph G, they are defined as:

Pα
1 (G) =

∏
u∈V (G)

d(u)α, Pα
2 (G) =

∏
uv∈E(G)

(d(u)d(v))α =
∏

u∈V (G)

d(u)αd(u),

where α ∈ R\{0}.
In [9] the minimum and maximum general multiplicative Zagreb indices of trees with

given order and number of branching vertices, pendant vertices or segments were obtained.
Extremal results concerning general multiplicative Zagreb indices for unicyclic graphs were
obtained in [1], for trees and unicyclic graphs with given matching number in [10], for trees
and quasi-trees with perfect matchings and with given order and number of pendant vertices
in [2].

The sum lordeg index is one of the Adriatic indices introduced in [11] and it is defined

by SL(G) =
∑

v∈V (G) d(v)
√
ln d(v) =

∑
v∈V (G):d(v)≥2

d(v)
√
ln d(v).

The vertex-degree function index Hf (G) was defined in [15] as

Hf (G) =
∑

v∈V (G)

f(d(v))

for a function f(x) defined on positive real numbers. The problem of minimizing the
vertex-degree function index Hf (G) for k-generalized quasi-unicyclic graphs of given order
was solved in [8] for functions f(x) which are strictly increasing and strictly convex.

Several topological indices mentioned above are related to vertex-degree function index
Hf (G), where f(x) is strictly convex and strictly increasing in the following cases:

1) 0Rα(G) =
∑

v∈V (G) d(v)
α, corresponds to f(x) = xα, where x ≥ 1. This function

is strictly convex and strictly increasing for α > 1. Inequality (1) is fulfilled if and only if
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0 < α < x0, where x0 ≈ 3.21066 is the positive solution of the equation 3x − 4 · 2x + 3 = 0
(see [13] for example).

2) The second general multiplicative Zagreb index is Pα
2 (G) =

∏
u∈V (G) d(u)

αd(u). We

have lnPα
2 (G) = α

∑
u∈V (G) d(u) ln d(u) and f(x) = αx lnx, where x ≥ 1. This function is

strictly increasing and strictly convex for α > 0 and strictly decreasing and strictly concave
for α < 0. Inequality (1) is verified if and only if α > 0; its reverse holds for α < 0.

3) The sum lordeg index SL(G) =
∑

v∈V (G) d(v)
√
ln d(v). We get f(x) = x

√
lnx, which

is strictly increasing and strictly convex for x ≥ 2 and (1) is true.
The rest of the paper is organized as follows. In Section 2, we present some preliminary

results. In Section 3, we solve the problem of minimizing the vertex-degree function index
Hf (G) for k-generalized quasi-trees G with given order if f(x) is strictly increasing and
strictly convex and characterize the extremal graphs.

2 Preliminary results

In what follows we shall suppose that the function f(x) is strictly increasing and strictly
convex. The following lemmas will be used in our proofs.

Lemma 1([8]). Assume x and y are real numbers such that y > 0 and x ≥ y + 2. Then

f(x) + f(y) > f(x− 1) + f(y + 1).

For integers n, p such that n ≥ 1 and p ≥ n denote by Dn,p the set of n-tuples x =
(x1, x2, . . . , xn) of integers such that x1 ≥ x2 ≥ . . . ≥ xn ≥ 1 and

∑n
i=1 xi = p. Consider

the function F (x) =
∑n

i=1 f(xi). By Lemma 1 the minimum of F (x) is reached if and only
if |xi − xj | ≤ 1 for every 1 ≤ i < j ≤ n, or equivalently, if and only if x1 + x2 + . . .+ xn is
an equipartition of p, having almost equal parts. It follows that the point of minimum of
F (x) on Dn,p is unique. Denote this point of minimum by xmin.

Let π = (x1, . . . , xn) and π′ = (x′
1, . . . , x

′
n) be two non-increasing integer sequences; we

write π � π′ if π ̸= π′,
∑n

i=1 xi =
∑n

i=1 x
′
i and

∑j
i=1 xi ≤

∑j
i=1 x

′
i for all j = 1, . . . , n − 1.

Such an ordering is sometimes called majorization. For this partial order relation in Dn,p

the smallest n-tuple is xmin and the greatest is (p− n+ 1, 1, . . . , 1), which will be also de-
noted by (p−n+1, 1n−1), where the exponent indicates multiplicity. If π = (x1, . . . , xn) is
a non-increasing integer sequence such that i < j and xj ≥ 2, then the following operation
is called a unit transformation from j to i on π: subtract 1 from xj , add 1 to xi and set
in non-increasing order the sequence deduced in this way. If this transformation is denoted
by T (π) and π ∈ Dn,p then T (π) ∈ Dn,p and by Lemma 1 we get F (T (π)) > F (π) since
f(x) is strictly convex. The following lemma on majorization of integer sequences is due to
Muirhead (see [6]):

Lemma 2. If π and π′ are two non-increasing integer sequences and π � π′, then π′

can be obtained from π by a finite sequence of unit transformations.

If π ∈ Dn,p denote by M(π) the set of sequences in Dn,p which can be obtained from
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π by a single unit transformation. Since every sequence π ∈ Dn,p which is different from
xmin can be obtained by a sequence of unit transformations and these transformations
strictly increase the value of F , it follows that the minimum of F in the set Dn,p\{xmin}
can be reached only in the set M(xmin) and so on.

Lemma 3([8]). If q > p ≥ n then

min
x∈Dn,q

F (x) > min
x∈Dn,p

F (x).

For a natural number s, 1 ≤ s ≤ n − 1, denote by Ds
n,p ⊂ Dn,p the set of n-tuples

(x1, x2, . . . , xn) ∈ Dn,p such that the last s components are equal to 1: xn−s+1 = xn−s+2 =
. . . = xn = 1. The following property also holds by Lemma 1:

Lemma 4([8]). If s < t ≤ n− 1 and p ≥ 2n− t+ 1 then

min
x∈Ds

n,p

F (x) < min
x∈Dt

n,p

F (x).

Since
∑n

i=1 di = 2|E(G)| we get:

Lemma 5([8]). We have
Hf (G) ≥ min

x∈Dn,2|E(G)|
F (x).

Equality may hold only if the point of minimum (x∗
1, x

∗
2, . . . , x

∗
n) of F (x1, x2, . . . , xn) in

Dn,2|E(G)| is graphical, i.e., if there exists a graph G with degrees di = x∗
i for i = 1, . . . , n.

3 Main results

First we shall consider the case of quasi-trees (k=1).

Theorem 1. Let G be a quasi-tree of order n ≥ 3. If f(x) is strictly convex and strictly
increasing, then the minimum of Hf (G) equals 2f(1)+(n−2)f(2) if G is a tree or nf(2) if
G is a non-trivial quasi-tree. The extremal graph is the path Pn or the cycle Cn, respectively.

Proof. Let G ∈ T 1
n such that Hf (G) is minimum. We shall distinguish two cases: Case 1:

G is a tree and Case 2: G is a non-trivial quasi-tree.
Case 1. In this case G has n−1 edges and the minimum of the function F (x) in Dn,2n−2

is attained only for the n-tuple (2, 2, . . . , 2, 1, 1). This degree sequence is graphical and has
a unique realization, namely Pn.

Case 2. By definition, there exists a vertex v0 such that G − v0 is a tree having
n − 1 vertices and n − 2 edges and G is not a tree. We will show that dG(v0) = 2.
Because G is not a tree we get dG(v0) ≥ 2. Suppose that dG(v0) ≥ 3. If v0u ∈ E(G),
let G1 = G − v0u. It follows that F = G − v0 is a tree, but G1 is not a tree since
|E(G1)| = |E(F )| + dG(v0) − 1 ≥ n. We get G1 ∈ T 1

n . Since f(x) is strictly increasing we
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obtain f(dG1(v0)) = f(dG(v0)− 1) < f(dG(v0)) and f(dG1(u)) = f(dG(u)− 1) < f(dG(u)),
which implies Hf (G1) < Hf (G), a contradiction. We deduce that dG(v0) = 2, hence G
has n − 2 + 2 = n edges. The minimum of the function F (x) in Dn,2n is attained only
for the n-tuple (2, 2, . . . , 2). This degree sequence is graphical and has a unique connected
realization, namely Cn. 2

For k ≥ 2 and n ≥ 3k denote by QT n,k the set of graphs consisting of K3 with V (K3) =
{x1, y1, z1} and three vertex-disjoint paths x1, . . . , xk; y1, . . . , yp and z1, . . . , zq, where p, q ≥
k and p + q = n − k. It is not difficult to see that the number of pairwise non-isomorphic
graphs from QT n,k equals 1 + ⌊(n − 3k)/2⌋. Indeed, this number equals the number of
representations of n− 3k as n− 3k = n1 + n2, where n1 ≥ n2 ≥ 0 and this number is equal
to 1 + ⌊(n− 3k)/2⌋. If G ∈ QT n,k then Hf (G) = 3f(3) + (n− 6)f(2) + 3f(1). Denote

φ(n) = 3f(3) + (n− 6)f(2) + 3f(1).

For n ≥ 6 denote by Bn the set of bicyclic graphs of order n consisting of two vertex
disjoint cycles Cp and Cq, where p, q ≥ 3 and p + q ≤ n joined by a path. If G ∈ Bn then
G ∈ T 2

n and Hf (G) = 2f(3)+ (n− 2)f(2). We have φ(n) < 2f(3)+ (n− 2)f(2) if and only
if the following inequality holds:

f(3) + 3f(1) < 4f(2). (1)

Theorem 2. Let f(x) be a strictly convex and strictly increasing function and G be a
k-generalized quasi-tree of order n ≥ 3k. Then the following properties hold:
A. If k = 2 and n ≥ 6 the minimum of Hf (G) is equal to:
i) φ(n) if (1) is true; G reaches this minimum if and only if G ∈ QT n,2.
ii) φ(n) if f(3) + 3f(1) = 4f(2) and the set of extremal graphs is QT n,2 ∪ Bn;
iii) 2f(3) + (n− 2)f(2) if f(3) + 3f(1) > 4f(2) and the set of extremal graphs is Bn.
B. For k ≥ 3 the minimum of Hf (G) is equal to 3f(3) + (n − 6)f(2) + 3f(1). G reaches
this minimum if and only if G ∈ QT n,k.

Proof. Suppose that k ≥ 2, n ≥ 3k and G ∈ T k
n such that Hf (G) is minimum. There

exists a k-quasi-vertex set Vk ⊆ V (G), |Vk| = k such that G − Vk is a tree, but for every
subset Vk−1 of cardinality k − 1 of V (G), the graph G − Vk−1 is not a tree, hence it has
cycles. Denote Wn−k = G − Vk. We have seen that Wn−k is a tree. If there exists a
vertex x ∈ Vk which is adjacent to a single vertex from Wn−k, then Vk−1 = Vk − v has the
property that G− Vk−1 is a tree, a contradiction. It follows that every vertex of Vk is not
adjacent to any vertex of Wn−k or is adjacent to at least two vertices from Wn−k. Suppose
that the subgraph induced by Vk has r ≥ 1 connected components A1, A2, . . . , Ar and in
each component there is at least one vertex which is adjacent with at least two vertices in
Wn−k. Any component Ai has at least |Ai| − 1 edges and equality holds if and only if this
component is a tree. Therefore the number of edges of G with at least one end in Vk is at
least 2r+

∑r
i=1(|Ai| − 1) = 2r+ k− r = k+ r ≥ k+1 because

∑r
i=1 |Ai| = |Vk| = k. Since

Wn−k is a tree it has n − k − 1 edges, which implies that |E(G)| ≥ k + 1 + n − k − 1 = n
and equality holds only if r = 1. Consequently, we shall consider the following cases: Case
1. |E(G)| = n, therefore G is unicyclic; Case 2. |E(G)| = n + 1, hence G is bicyclic and
Case 3. |E(G)| ≥ n+ 2.
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Case 1. In this case r = 1 and G[Vk] has |Vk| − 1 = k − 1 edges, i.e., G[Vk] is a tree
with k ≥ 2 vertices and exactly one vertex denoted by w of this tree is adjacent with two
vertices of Wn−k. This implies that G has at least one pendant vertex. Four subcases may
hold: Subcase 1.i. (1 ≤ i ≤ 4): G has i pendant vertices and subcase 1.5. G has at least
five pendant vertices.

Subcase 1.1. G being a connected unicyclic graph of size n with one pendant vertex
it follows that G[Vk] is a path w, y1, y2, . . . , yk−1 such that dG(w) = 3, dG(y1) = . . . =
dG(yk−2) = 2 and dG(yk−1) = 1. We get that G consists of a cycle Cs and a path Pt having
a common vertex such that s ≥ 3, t ≥ 2 and s+ t = n+ 1. It is not difficult to see that in
this subcase G /∈ T k

n , which contradicts the hypothesis.

Subcase 1.2. In this case G has two pendant vertices. We consider other two subcases:
Subcase 1.2.1. G[Vk] is a path; Subcase 1.2.2. The tree G[Vk] has two pendant vertices
different from w. In both subcases the vertex w is adjacent with two vertices of Wn−k.

Subcase 1.2.1. Since Wn−k = G − Vk is a tree it follows that G is a unicyclic graph
consisting of a cycle Cs with s ≥ 3 and two vertex disjoint paths having each a vertex v1
and v2 respectively, common with Cs. We can choose a subset Vk−1 ⊂ V (G), |Vk−1| = k−1
containing at least a vertex of Cs different from v1 and v2, having degree equal to two such
that G− Vk−1 is a tree, a contradiction.

Subcase 1.2.2. In this case G is a unicyclic graph containing a cycle Cs and a tree with
two pendant vertices having a vertex common with Cs. As in the previous subcase we find
that G /∈ T k

n .

Subcase 1.3. In this case G has three pendant vertices. We further prove that in this
case G ∈ QT n,k. We shall distinguish the subcases 1.3.1, 1.3.2 and 1.3.3 which correspond
to the cases when G[Vk] has one, two or three pendant vertices different of w, respectively.
In all these subcases G has a unique cycle Cs with s ≥ 3.

Subcase 1.3.1. In this case G consists of Cs and three vertex disjoint paths having each a
vertex x1, y1 and z1, respectively common with Cs or one path and a tree with two pendant
vertices which are vertex disjoint and have each a vertex common with Cs. In the first case
since G ∈ T k

n it is necessary that s = 3 and from the paths with ends in x1, y1, z1 at least
one must have k vertices and the other at least k vertices each. It follows that G ∈ QT n,k.
In all other subcases we can find a vertex v ∈ V (Cs) such that dG(v) = 2 and a subset
Vk−1 ⊂ V (G) with k−1 vertices such that v ∈ Vk−1 and G−Vk−1 is a tree, a contradiction.

Subcase 1.4. Because k ≥ 2 we get n ≥ 3k ≥ 6. We shall consider the cases n = 6, n = 7
and n ≥ 8.

If n = 6 then k = 2 and minx∈D4
6,12

F (x) is reached for x∗ = (42, 14) by Lemma 1 since

G has four pendant vertices. But the degree sequence (42, 14) is not graphical. We have
M(42, 14) = {(5, 3, 14)}, therefore the next point of minimum of F is (5, 3, 14), which implies
that Hf (G) ≥ f(5) + f(3) + 4f(1). We have f(5) + f(3) + 4f(1) > φ(6) = 3f(3) + 3f(1)
since this is equivalent to f(5) + f(1) > 2f(3), which is true by Jensen’s inequality.

For n = 7 we have k = 2 and Hf (G) ≥ minx∈D4
7,14

F (x). This minimum is reached for

x∗ = (4, 32, 14) and F (x∗) = f(4) + 2f(3) + 4f(1). We get f(4) + 2f(3) + 4f(1) > φ(7) =
3f(3) + f(2) + 3f(1), a contradiction, since this is equivalent to f(4) + f(1) > f(3) + f(2)
which holds by Lemma 1.

If n ≥ 8 then minx∈D4
n,2n

F (x) is reached for x∗ = (34, 2n−8, 14), which implies that

Hf (G) ≥ F (x∗) = 4f(3)+(n−8)f(2)+4f(1) and 4f(3)+(n−8)f(2)+4f(1) > φ(n) since
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this inequality is equivalent to f(3) + f(1) > 2f(2), which follows by Jensen’s inequality.

Subcase 1.5. If G has s ≥ 5 pendant vertices, by Lemma 4 we get minx∈Ds
n,2n

F (x∗) >

minx∈D4
n,2n

F (x∗), which implies that Hf (G) > φ(n), which is a contradiction.

Case 2. If |E(G)| = n+ 1 then G is bicyclic and minx∈Dn,2n+2 F (x) is reached for x∗ =
(32, 2n−2). This degree sequence has graphical realizations consisting of two cycles having
in common a path Pt with t ≥ 2 or two cycles joined by a path Pt with t ≥ 2. These bicyclic
graphs do not belong to T k

n for k ≥ 3 and n ≥ 3k. For k = 2 ifG consists of two cycles having
in common a path Pt with t ≥ 2 then G /∈ T 2

n , but if G is composed of two cycles joined by a
path Pt with t ≥ 2, which means thatG ∈ Bn, thenG ∈ T 2

n andHf (G) = 2f(3)+(n−2)f(2).
If (1) holds, or φ(n) < 2f(3) + (n − 2)f(2), and G ∈ Bn, this contradicts the minimality
of G. If f(3) + 3f(1) = 4f(2) then graphs from QT n,2 and graphs from Bn have the same
vertex-degree function index and if φ(n) > 2f(3) + (n− 2)f(2) and G ∈ QT n,2 then again
contradicts the minimality of G. Further we get M(32, 2n−2) = {(4, 3, 2n−3, 1), (4, 2n−1)}.
We have F (4, 3, 2n−3, 1) = f(4)+f(3)+(n−3)f(2)+f(1) > φ(n) since this is equivalent to
f(4)+3f(2) > 2f(3)+2f(1), which is true since f(4)+f(2) > 2f(3) by Jensen’s inequality
and f(2) > f(1), f(x) being strictly increasing, which contradicts the minimality of G.
The sequence (4, 2n−1) has graphical realizations consisting of two cycles having a vertex in
common, but none of these bicyclic graphs belong to T k

n for k ≥ 3 and n ≥ 3k. For k = 2
if G consists of two cycles having only one vertex in common then G ∈ T 2

n and Hf (G) =
f(4)+ (n− 1)f(2). We get f(4)+ (n− 1)f(2) > 2f(3)+ (n− 2)f(2) since this is equivalent
to f(4) + f(2) > 2f(3) and this holds by Jensen’s inequality. We obtain that in this case
G cannot be extremal. By Muirhead’s Lemma to find the next minimum points of F (x)
for k ≥ 3 it is necessary to study the points in M((4, 2n−1) = {(5, 2n−2, 1), (4, 3, 2n−3, 1)}.
For the second n-tuple we have seen that the value of F is greater than φ(n) and all
realizations of the first n-tuple consist of two cycles having a unique vertex v in common
and a path Pt with t ≥ 2 ending in v, which is the single vertex of Pt common with
the cycles. These bicyclic graphs do not belong to T k

n for k ≥ 3 and n ≥ 3k. Further
M((5, 2n−2, 1)) = {(6, 2n−3, 1, 1), (5, 3, 2n−4, 1, 1)}. We deduce that F (6, 2n−3, 1, 1) > φ(n)
or f(6) + (n − 3)f(2) + 2f(1) > 3f(3) + (n − 6)f(2) + 3f(1) since this is equivalent to
f(6) + 3f(2) > 3f(3) + f(1). Since f(x) is strictly convex and strictly increasing we obtain
f(6) + 3f(2) > 2f(4) + 2f(2) > 4f(3) > 3f(3) + f(1). Also F (5, 3, 2n−4, 1, 1) > φ(n) or
f(5) + f(3) + (n − 4)f(2) + 2f(1) > 3f(3) + (n − 6)f(2) + 3f(1), which is equivalent to
f(5) + 2f(2) > 2f(3) + f(1). The last inequality holds since f(5) + f(2) > 2f(3.5) > 2f(3)
and f(2) > f(1).

Case 3. If |E(G)| ≥ n + 2 by Lemma 5 we deduce that Hf (G) ≥ minx∈Dn,2n+4 F (x).
This minimum is reached for x∗ = (34, 2n−4) and F (x∗) = 4f(3) + (n − 4)f(2) > φ(n)
since this is equivalent to f(3) + 2f(2) > 3f(1). This inequality holds since f(x) is strictly
increasing and contradicts the hypothesis about the minimality of G. 2

Concluding remarks. In this paper we have solved an optimization problem concern-
ing the vertex-degree function index Hf (G) in the case when G is a k-generalized quasi-tree
of order n ≥ 3k and k ≥ 1.

Note that by replacing minimum by maximum, strictly increasing by strictly decreasing,
strictly convex by strictly concave and by reversing the inequality in (1), Theorems 1 and
2 remain true.
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