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Abstract

Whether the surface of a polyhedron made of a flexible material such as paper can
be flattened without cutting or stretching is a problem that has been investigated.
This problem has been solved for any 3-dimensional convex polyhedron using moving
(rolling) creases, and has been extended to higher dimensional polytopes. We refer the
set of facets for a polytope as surface. In this paper we focus on a 4-dimensional regular
simplex (a regular 5-cell) whose surface consists of five regular tetrahedra (facets). We
provide a continuously folding motion of its surface onto one facet such that the moving
creases of this motion occupy one sixth of the surface volume. Note that if we allow
moving creases in the major part of the surface, such a continuous motion has been
given by the authors together with Abel et al., with creases whose total volume is four
fifths of the surface’s. Hence, in this paper the ratio of rigid portions (not occupied by
any moving creases) to the surface volume is increased from one fifth to five sixths.
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1 Introduction

Whether the surface of a polyhedron made of a flexible material such as paper can be flat-
tened without cutting or stretching is a problem that has been investigated (see [2], p.279).
This problem was solved in [1, 6] for any convex polyhedron using moving creases to change
the shapes of some faces, which follows from Cauchy’s rigidity theorem. The flattening mo-
tions are described by using straight skeletons in [1], and cut locus and Alexandrov’s gluing
theorem in [6]. The portions of the moving creases occupy a major part of its surface. For
example, for a regular tetrahedron the portions of the moving creases by the method in [1]
occupy three fourths of the entire surface, see Fig. 1 (a), and by the method in [6] occupy
almost all of the surface. On the other hand, by the so called kite method, described in
[3, 8], the portions of the moving creases occupy one twelfth of the entire surface, that is,
eleven twelfth are rigid, see Fig. 1 (b); for details, see Section 3. Moreover, the number of
faces in each folded state is less than or equal to eight. Note that it was proved in [7] that
we can reduce the area of moving creases as small as we want, where the number of faces
in each folded state increases.

We have previously proved in a joint paper [1] that any n-dimensional convex polytope
can be continously folded in any (n−1)-dimensional face (called facet). However, the entire
surface except at most two facets is occupied by the moving creases. Here, we focus on a
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Figure 1: Continuous flattening of the surface of a regular tetrahedron using two methods;
(a) The method shown in [1]; (b) The kite method shown in [3, 8], where m = (14) and
p = (123) are the midpoint of the edge [14] and the center of gravity of the triangular face
[123], respectively.
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regular 4-dimensional simplex (called a regular 5-cell) and provide a continuous folding
motion onto any of its facets. The moving creases of this motion occupy one sixth of the
surface volume, which is much smaller than the value (four fifths) required by the method
in [1]; that is, the rigid portions (not occupied by any moving creases) is increased from one
fifth to five sixths by our method proposed here. We analyze those creases and give their
concrete figures. The rigid portions are important for constructing some figures, when we
consider applications to origami-based engineering (see e.g., [9]). We prove the following
theorem.

Theorem 1.1. The surface of a 4-dimensional regular simplex can be continuously folded
onto any of its facets such that the moving creases of this motion occupy one sixth of the
surface volume, that is, five sixths of the surface are rigid (not occupied by any moving
creases).

In section 2, a definition and notation are given. In section 3, we analize a continuous
flattening motions in a 3-dimensional regular simplex (tetrahedron). In section 4, we prove
Theorem 1.1 by extending the kite method from the 3- dimensional space to a 4-dimensional
space.

2 Definition and notation

We define a continuous folding motion of the surface Q of a 4-dimensional polytope as a
sequence of polyhedral manifolds {Q(t) : 0 ≤ t ≤ 1} satisfying the following conditions, and
we call each Q(t) the folded state of Q for t in the motion.

Condition 1. For each t (0 ≤ t ≤ 1), there is an intrinsically isometric mapping from
Q(t) onto Q, that is, there are polyhedral subdivisions of Q(t) and Q into the same number
of pieces such that there is a one-to-one correspondence between those sets and that every
two corresponding pieces have neighbors congruent to each other.

Condition 2. The mapping from t (0 ≤ t ≤ 1) to Q(t) is continuous.
Condition 3. Q(0) = Q.

For k ≥ 2 points p1, p2, ..., pk in n-space (n = 3, 4) we denote by [p1p2...pk] their covex
hull and by (p1p2...pk) their center (of gravity). So (p1p2) means the midpoint of [p1p2].
Let P be an n-dimensional regular simplex with n+1 vertices v1, v2, , · · · , vn+1 in n-space,
which are denoted more briefly as 1, 2, · · · , n + 1, respectively. We denote by l the edge
length of P , and by Qi the facet of P with all vertices except i, for i = 1, 2, · · · , n + 1.
We denote by S(r;u) the (k − 1)-dimensional sphere of radius r with center u in a given
k-space.

3 Analyzing the motions in a 3-dimensional simplex

We prove the theorem by using a kite method extended to 4-dimensional case in some
sense, applying a similar motion to the one shown in Fig. 1(b) for the 3-dimensional
simplex (tetrahedron). Thus, we analyze the continuous motion by kite method used in the
proof for the regular tetrahedron. We derive several facts, given in the following as criteria
for further motions.



256 Continuous folding of a regular simplex

In this section P is a regular tetrahedron [1234] with edge length l as shown in Fig.
1(b). Let m be the midpoint (14) of the edge [14], and p and g the centers of gravity of the
face Q4 = [123], and P = [1234], respectively.

Criterion 1. The face Q4 is fixed.
Criterion 2. The face Q1 rotates about the edge [23] and overlaps on Q4. At that time,

the edge [14] is folded in half at the midpoint (14) and vertex 4 moves to vertex 1 along the
shorter circular arc in the intersection of two spheres of radius l with centers 2 and 3, and
so the position (v4)t of v4 for t (0 ≤ t ≤ 1) satisfies

(v4)t ∈ S(l; v2)
⋂

S(l; v3).

Criterion 3. The face Q2 is folded with the crease [(14)3], and located between Q4 and
Q1. The triangle [1m4], a half of Q2, rotates about the edge [13]. The midpoint m moves to
the midpoint (12) along the shorter circular arc in the intersection of two spheres of radius
l/2 and (

√
3/2) l =

√
3 l/2 and with centers 1 and 3, respectively. Hence, the position mt

of m for t (0 ≤ t ≤ 1) satisfies

mt ∈ S(l/2; v1)
⋂

S(
√
3 l/2; v3).

Criterion 4. If the midpoint m = (14) is moved onto (13) instead of (12), the face Q3

can be continuously folded onto [13(12)] similarly to the motion of Q2. However, since m is
moved onto (12), the line segment [m2] should be folded at some point q in [m(124)], and
[q1] and [q4] are attached to Q2 (see Fig. 1). The existence of such q is guaranteed by the
intersection of two line segments [m2] and [m3] (see [4, 8] for details). The point q traces
[mp] from the midpoint m = (14) of the edge [14] to the center of gravity p = (124) of the
triangular face [124].

Criterion 5. The centers of gravity of all faces move onto (123).

For such a motion of Q3 verifying Criteria 1-5, we say that “Q3 follows Q2 by a priority
rule for faces.”

4 Proof of Theorem

Hereafter through the paper, P = [12345] andQ is the surface of P as shown in Fig. 2, where
in the left figure the vertex 5 is added to the facet Q5 = [1234] in another direction as a
4-dimensional figure. We will apply a motion similar to the surface of a regular tetrahedron
when using the kite method, and described below.

4.1 Motions of vertices, edges, and faces

We show the motions of vertices, edges, and faces of the surface Q sequentially.

4.1.1 Vertices

Four vertices in the facet [1234] are fixed. So the facet [1234] is also fixed. We fold only
one edge [15] while other edges are not folded, that is, rigid through the motions. The
vertex 5 moves to the vertex 1 along the shorter circular arc in the intersection of three
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Figure 2: A continuous folding of the surface of a 4-dimensional regular tetrahedron [12345]
onto its facet [1234]: m is the midpoint of the edge [15], p is the center of gravity of the
triangular face [125], and g is the center of gravity the facet [1234].

3-dimensional spheres of the centers 2, 3, and 4 with radius l, and so the position (v5)t of
v5 for t (0 ≤ t ≤ 1) satisfies

(v5)t ∈ S(l; v2)
⋂

S(l; v3)
⋂

S(l; v4).

See Fig. 3.
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Figure 3: Motions of vertex 5, the midpoint (15), and the center of gravity (125) of the face
[125] are shown in (a), (b), and (c), respectively.

4.1.2 Edges

All edges except [15] are rigid. The edge [15] is folded in half at the midpoint m = (15)
and moves to the midpoint (12) along the shorter circular arc in the intersection of three
spheres two of which are centered at 3 and 4 and have the same radius (

√
3/2) l while the

third has center at 1 and radius l/2. The motion is such that for each moment the point
m = (15) is located in the hyperplane bisecting two points v1 and (v5)t in the folded state
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Qt for t (0 ≤ t ≤ 1). So the position mt of m = (15) for t (0 ≤ t ≤ 1) satisfies

mt ∈ S(l/2; v1)
⋂

S(
√
3 l/2); v3)

⋂
S(

√
3 l/2; v4).

4.1.3 Faces

All faces except the three faces attaching to the edge [15] are rigid, that is, not folded
anywhere through the motion. The other three faces are [152], [153], and [154]. Two faces
[153] and [154] are folded in half and overlap onto [1(12)3] and [1(12)4], respectively. The
face [152] is folded onto [12(123)] with moving creases, similarly to the face [124] of a regular
tetrahedron [1234] shown in Fig. 1. Note that we move (125) onto (123). See Fig. 3 and
Fig. 4.

The above motions are the same as the motions described in [5] for the 2-skeleton of P .
In the next subsection, we determine the motion of the facets of P .
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Figure 4: Motion of the 2-skelerton of Q.

4.2 Motion of facets

Basically, we apply a motion similar to the one for the continuous flattening of the surface
of a regular tetrahedron by the kite method. Two facets Q5 = [1234] and Q1 = [2345] are
rigid and other three facets are folded in half with modification to manage collisions among
those three facets. We define a rule for those three facets as follows. Q3 follows Q2, and
Q4 follows both Q2 and Q3, which is called a “priority rule for facets.”

4.2.1 Facet Q5 and Q1

The facet Q5 is fixed. The facet Q4 is rotated about the face [123] and overlapped onto Q5.
The vertex 5 moves along the shorter circular arc of the intersection of three 3-dimensional
spheres all of radius l (the edge length) with centers 2, 3, and 4.

4.2.2 Facet Q2

The facet Q2 is folded in half by the triangular face T2 = [(15)34]. We call T2 a medial face
of Q2. The half part [(15)134] is rotated about the face [134] and overlapped (multilayered)
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onto [(12)134], and located between Q5 and Q1 (see Fig. 5). The face T2 moves to the
medial face [(12)34] of Q5. The point (15) moves along the shorter circular arc of the
intersection of three spheres; two of them have radius (

√
3/2) l with centers 3 and 4, and

one of them has radius 1/2 l with the center 1.
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Figure 5: Motion of the facet Q2 = [1345]; (a) The surface Q of the regular simplex
P = [12345]; (b) The facet Q2 of P with the medial face [(15)34]; (c) The final folded state
of Q2 in Q5.

4.2.3 Facet Q3

If the midpoint (15) is moved onto (13) instead of (12), ignoring the motion Q2, the facet
Q3 can be continuously folded in half by the medial face T3 = [(15)24] and overlaped onto
the half [(13)124] of Q5 as similar to the motion of Q2 (see Fig.6 (a),(b), and (c)). However,
since (15) is moved onto (12), the medial face T3 should be folded along the line segment
[(123)4] at t = 1 as shown in Fig. 6 (d) and (e). Since for each t (0 ≤ t ≤ 1) the medial face
T3 intersects with T2 on the line segment [q4] for some q in the line segment [(15)(125)], T3

should be folded along [q4] with crease and attached to T2 by the priority rule for facets.
More precisely, consider the rotation of [(15)134] (a half of Q2) about the face [134] and

rotation of [(15)124] (a half of Q3) about the face [124] simultanuously for t (0 ≤ t ≤ 1). For
each t the intersection of medial faces T2 = [(15)34] and T3 = [(15)24] is the line segment
[q4] for some q in [(15)(125)] where q = (15) at t = 0 and q = (125) at t = 1. See Fig. 6
(f) where Q3 is described in a different way from Fig 6 (b). Therefore, the set S(Q3) of
moving creases in Q3 is an infinite set of triangles [q14] and [q45] where q moves from (15)
to (125), that is,

S(Q3) = {[q14], [q45] : q ∈ [(15)(125)]},

and the final folded state of Q3 is a multilayed triangular pyramid onto [124(123)] in Q5

(see Fig. 6 (e)).

4.2.4 Facet Q4

If the midpoint (15) moves onto (14) instead of (12), the facet Q4 can be continuously
folded in half onto [(14)123] similarly to the motion of Q2 (see Fig. 7 (a), (b), and (c)).
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Figure 6: Motion of the facet Q3 = [1245]; (a) The surface Q of the regular simplex
P = [12345]; (b) The facet Q3 with the medial face T3 = [(15)24]; (c) A folded state of
Q3 in Q5 with the assumption that (15) moves onto (13); (d) Folded state of T2 and T3 if
they can move separately; (e) The final folded state of Q3 with T3 shaded; (f) The moving
creases [q14] and [q45] in Q3 for q ∈ [(15)(125)].
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Figure 7: Motion of the facet Q4 = [1235]; (a) The surface Q of the regular simplex
P = [1235]; (b) The facet Q4 of P with the medial face T4 = [(15)23]; (c) The final folded
state of T4 in Q5 if (15) moves onto (14); (d) The intersection of the folded state of T2 and
T4; (c) Modified folded state of T4 by T2; (f) Modified folded state of T4 by T2 and T3.
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However, (15) is moved onto (12). By the priority rule for facets Q2 and Q4, if Q4 follows
Q2 only, which means Q3 is ignored, T4 is folded, in a similar way as T3, onto the union of
[23(124)] and [3(12)(123)], as shown in Fig. 7 (e). However, by the priority rule for facets,
Q4 follows both Q3 and Q2, the center of gravity (125) is moved onto (123) as mentioned
in the motion of faces (see Fig. 3, Fig. 4, and Fig. 7 (d), (e), and (f)).

The point q is in [(15)(125)] for any fixed t(0 ≤ t ≤ 1), as mentioned in the motion of
Q3. Let h be the point obtained as the intersection of [(15)g] and [3q] where g = (1235).
See Fig. 8(a). The set S(T4) of moving creases of T4 are the union of two sets, that is,

S(T4) = {[3q] : q ∈ [(15)(125)]} ∪ {[2h] : h ∈ [(15)g]}.

See Fig. 8 (b). The triangle T4 = [(15)23] is finally folded onto the union of [(12)3g],
[23g], and [2(123)g] (see Fig.7 (f)).

The set S(Q4) of moving creases in Q4 consists of four sets of triangles, as shown in Fig.
8 (c), that is,

S(Q4) = {[q13], [q35]; q ∈ [(15)(125)]} ∪ {[12h], [25h];h ∈ [(15)g]}.

Therefore, the final folded state ofQ4 is a multilayered triangular pyramid onto [123(1234)]
(see Fig. 2). The two triangular pyramids [123g] and [235g] are not folded with any creases,
that is, they are rigid, and move onto the triangular pyramid [123(1234)]. The triangu-
lar pyramid [135g] is folded onto [13(12)(1234)] with moving creases {[13h], [35h] : h ∈
[(15)g]}. The triangular pyramid [125g] is folded onto [12(123)(1234)] with moving creases
{[qh1], [qh5] : q ∈ [(15)(125)]} ∪ {[12h], [25h] : h ∈ [(15)g]}. Therefore, the total volume
used for moving creases in Q4 is one half of its surface volume.

4.3 Volume of moving creases

The total volume used for moving creases in Q is one sixth of its surface volume. Because
Q1 and Q5 are rigid, Q2 has no moving creases, and in Q3 and Q4 their one third and one
half, respectively, are occupied by creasses.
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