Cohomology and deformations of n-Hom-Lie algebra morphisms

by

Anja Arfa⁽¹⁾, Nizar Ben Fraj⁽²⁾, Abdenacer Makhlouf⁽³⁾

Abstract

The main purpose of this paper is to define a cohomology complex of n-Hom-Lie algebra morphisms and consider their deformation theory. In particular, we discuss infinitesimal deformations, equivalent deformations and obstructions. Moreover, we study (n + 1)-Hom-Lie algebra morphisms induced by n-Hom-Lie algebra morphisms and provide examples.

Key Words: *n*-Hom-Lie algebra, *n*-Hom-Lie algebra morphism, cohomology, deformation.

2020 Mathematics Subject Classification: Primary 17A40, 17A42, 17B56, 17B61, 17D30.

1 Introduction

Filippov [8] introduced *n*-Lie algebras which are a generalization of Lie algebras. The binary bracket is replaced by a n-ary multilinear operation which is skew-symmetric and satisfies the *n*-Jacobi identity or Filippov identity, for n > 2. The motivation for ternary Lie algebras came first from Nambu mechanics [15], generalizing classical mechanics and allowing more than one hamiltonian. The algebraic formulation of this theory is due to Takhtajan [18]. Ternary operations appeared also is String Theory and were used to construct solutions of the Yang-Baxter equation [17]. Hom-type generalizations of n-Lie algebras called n-Hom-Lie algebras were introduced by Ataguema, Silvestrov and the last author in [2]. These type of algebras were motivated by q-deformations of algebras of vector fields like Witt and Virasoro algebras. Their main feature is that usual identities are twisted by linear maps. Structure, representations and extensions of *n*-Hom-Lie algebras were studied in [1, 7]. Methods to construct *n*-Hom-Lie algebras from *n*-Lie algebra have been discussed in [2]. Furthermore, 3-Lie or 3-Hom-Lie algebras can be obtained from Lie or Hom-Lie algebras, respectively, using a so-called trace maps, see [4, 5]. The construction provides similarly (n+1)-(Hom-)Lie algebras from n-(Hom-)Lie algebras. These (n + 1)-ary algebras are called (n + 1)-(Hom-)Lie algebras induced by n-(Hom-)Lie algebras. The relationships between their properties have been studied in [6, 13].

Deformation theory is based on formal power series and is closely related to a suitable cohomology. The approach was introduced first by Gerstenhaber for rings and associative algebras using Hochschild cohomology [10] and then extended to Lie algebras, using Chevalley-Eilenberg cohomology, by Nijenhuis and Richardson. They considered deformations of Lie algebras morphisms in [16], that were also studied by Frégier in [9]. Generalizations for *n*-Lie algebras have been considered in various papers see [14] for a review and [3] for *n*-Lie algebra morphisms. Cohomology of multiplicative *n*-Hom-Lie algebras were provided in [1]. This aim of this paper is to deal with *n*-Hom-Lie algebra morphisms, construct a cohomology complex and study their deformations. For that, we define a cohomology structure of *n*-Hom-Lie algebras with values in a module compatible with that of *n*-Hom-Lie algebra morphisms. The major line of this paper consists on deformations of *n*-Hom-Lie algebras morphisms. We discuss concepts of infinitesimal deformations, equivalence and obstruction. We denote by \mathcal{N} and \mathcal{N}' two *n*-Hom-Lie algebras. Equivalence classes of infinitesimal deformations of *n*-Hom-Lie algebras are characterized by the cohomology groups $H^2(\mathcal{N}, \mathcal{N})$ and by $H^1(\mathcal{N}, \mathcal{N}')$ for that of the morphism $\phi : \mathcal{N} \to \mathcal{N}'$. Furthermore, we study (n + 1)-Hom-Lie algebra morphisms induced by *n*-Hom-Lie algebra morphisms and compare their corresponding cohomologies.

The paper is organized as follows: In Section 1, we review the basics about *n*-Hom-Lie algebras and their representation theory. In Section 2, we define the cohomology of *n*-Hom-Lie algebras with values in an adjoint module. Thus, we define coboundary operator and the *n*-cochains module $C^n(\phi, \phi)$ in the cohomology of *n*-Hom-Lie algebras morphisms. Section 3 deals with deformations of *n*-Hom-Lie algebras morphisms. We study infinitesimal deformations and equivalent deformations, as well as obstructions. We show that the obstruction to extend a deformation of order N to a deformation of order N + 1 is a coboundary. In the last Section, we study (n + 1)-Hom-Lie algebra morphisms induced by *n*-Hom-Lie algebra morphisms. We restrict ourselves to 3-Hom-Lie algebras induced by Hom-Lie algebras and provide examples.

2 Basics

In this section, we summarize the definitions and basic properties of n-Lie algebras and n-Hom-Lie algebras. We recall as well their representation theory.

Definition 2.1. A n-ary Hom-Nambu algebra is a triple $(\mathcal{N}, [\cdot, \ldots, \cdot], \widetilde{\alpha})$ consisting of a vector space \mathcal{N} , a n-linear map $[\cdot, \ldots, \cdot] : \mathcal{N}^n \to \mathcal{N}$ and a family $\widetilde{\alpha} = (\alpha_i)_{1 \leq i \leq n-1}$ of linear maps $\alpha_i : \mathcal{N} \to \mathcal{N}$, satisfying

$$[\alpha_1(x_1), \dots, \alpha_{n-1}(x_{n-1}), [y_1, \dots, y_n]] = \sum_{i=1}^n [\alpha_1(y_1), \dots, \alpha_{i-1}(y_{i-1}), [x_1, \dots, x_{n-1}, y_i], \alpha_i(y_{i+1}), \dots, \alpha_{n-1}(y_n)]$$
(2.1)

for all $(x_1, \ldots, x_{n-1}) \in \mathcal{N}^{n-1}$, $(y_1, \ldots, y_n) \in \mathcal{N}^n$. The identity (2.1) is called Hom-Nambu identity, it is also called fundamental identity or Filippov-Jacobi identity.

Let $x = (x_1, \ldots, x_{n-1}) \in \mathcal{N}^{n-1}$, $\tilde{\alpha}(x) = (\alpha_1(x_1), \ldots, \alpha_{n-1}(x_{n-1})) \in \mathcal{N}^{n-1}$ and let $(y_1, \ldots, y_n) \in \mathcal{N}^n$. The Hom-Nambu identity (2.1) may be written in terms of adjoint map as

$$ad(\tilde{\alpha}(x))([y_1,\ldots,y_n]) = \sum_{i=1}^n [\alpha_1(y_1),\ldots,\alpha_{i-1}(y_{i-1}),ad(x)(y_i),\alpha_i(y_{i+1}),\ldots,\alpha_{n-1}(y_n)]$$

Definition 2.2. A n-ary Hom Nambu algebra $(\mathcal{N}, [\cdot, \ldots, \cdot], \widetilde{\alpha})$ where $\widetilde{\alpha} = (\alpha_i)_{1 \leq i \leq n-1}$ is called n-Hom-Lie algebra (n-ary Hom-Nambu-Lie algebra) if the bracket is skew-symmetric that is

$$[x_{\sigma(1)},\ldots,x_{\sigma(n)}] = Sgn(\sigma)[x_1,\ldots,x_n] \quad \forall \sigma \in S_n \quad and \quad x_1,\ldots,x_n \in \mathcal{N}.$$

Remark 2.3. When the maps $(\alpha_i)_{1 \leq i \leq n-1}$ are all identity maps, one recovers the classical *n*-Lie algebras. The Hom-Nambu identity (2.1), for n = 2 corresponds to Hom-Jacobi identity, which reduces to Jacobi identity when $\alpha_1 = id$.

Definition 2.4. Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \widetilde{\alpha})$ and $(\mathcal{N}', [\cdot, \ldots, \cdot]', \widetilde{\alpha}')$ be two n-Hom-Lie algebras where $\widetilde{\alpha} = (\alpha_i)_{i=1,\ldots,n-1}$ and $\widetilde{\alpha}' = (\alpha'_i)_{i=1,\ldots,n-1}$. A linear map $f : \mathcal{N} \to \mathcal{N}'$ is a n-Hom-Lie algebra morphism if it satisfies

$$f([x_1, \dots, x_n]) = [f(x_1), \dots, f(x_n)]'$$

$$f \circ \alpha_i = \alpha'_i \circ f \quad \forall i = 1, \dots, n-1$$

Definition 2.5. A multiplicative n-Hom-Lie algebra is a n-Hom-Lie algebra $(\mathcal{N}, [\cdot, \ldots, \cdot], \widetilde{\alpha})$, where $\widetilde{\alpha} = (\alpha_i)_{1 \le i \le n-1}$ with $\alpha_1 = \cdots = \alpha_{n-1} = \alpha$, satisfying

$$\alpha([x_1,\ldots,x_n]) = [\alpha(x_1),\ldots,\alpha(x_n)], \forall x_1,\ldots,x_n \in \mathcal{N}.$$

We denote a multiplicative n-Hom-Lie algebra by $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$, where $\alpha : \mathcal{N} \to \mathcal{N}$ is a linear map.

Remark 2.6. Let $(\mathcal{N}, [\cdot, \ldots, \cdot])$ be a *n*-Lie algebra and let $\rho : \mathcal{N} \to \mathcal{N}$ be a *n*-Lie algebra endomorphism. Then $(\mathcal{N}, \rho \circ [\cdot, \ldots, \cdot], \rho)$ is a multiplicative *n*-Hom-Lie algebra.

The concept of representation of n-Lie algebras is generalized to n-Hom-Lie algebras in a natural was as follows.

Definition 2.7. Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$ be a multiplicative n-Hom-Lie algebra. A representation ρ of \mathcal{N} on a vector space V is a linear map $\rho : \mathcal{N}^{n-1} \to End(V)$ such that for $x = (x_1, \ldots, x_{n-1}), y = (y_1, \ldots, y_{n-1}) \in \mathcal{N}^{n-1}$ and $y_n \in \mathcal{N}$, we have

$$\rho(\alpha(x)) \circ \rho(y) = \rho(\alpha(y)) \circ \rho(x) + \rho[x, y]_{\alpha} \circ v$$
$$\rho(\alpha(x_1), \dots, \alpha(x_{n-2}), [y_1, \dots, y_n]) \circ v =$$
$$\sum_{i=1}^n (-1)^{n-i} \rho(\alpha(y_1), \dots, \widehat{\alpha(y_i)}, \dots, \alpha(y_n)) \circ \rho(x_1, \dots, x_{n-2}, y_i),$$

where $v \in End(V)$ and $[x, y]_{\alpha} = \sum_{i=1}^{n-1} (\alpha(y_1), \dots, ad(x)(y_i), \dots, \alpha(y_{n-1}))$. The representation space (V, v) is said to be a \mathcal{N} -module.

Let $(\mathcal{N}, [., \ldots, .], \alpha)$ and $(\mathcal{N}', [., \ldots, .]', \alpha')$ be two *n*-Hom-Lie algebras and $\phi : \mathcal{N} \to \mathcal{N}'$ be a *n*-Hom-Lie algebra morphism. Let $\wedge^{n-1}\mathcal{N}$ be the set of elements $x_1 \wedge \cdots \wedge x_{n-1}$ that are skew-symmetric in their arguments. On $\wedge^{n-1}\mathcal{N}$, for $x = x_1 \wedge \cdots \wedge x_{n-1} \in \wedge^{n-1}\mathcal{N}$, $y = y_1 \wedge \cdots \wedge y_{n-1} \in \wedge^{n-1}\mathcal{N}$, $z \in \mathcal{N}'$, we define

- a linear map $L' : \wedge^{n-1} \mathcal{N} \wedge \mathcal{N}' \to \mathcal{N}', L'(x) \cdot z = [\phi(x_1), \ldots, \phi(x_{n-1}), z]'$ for $z \in \mathcal{N}'$.
- a bilinear map $[,]_{\alpha} : \wedge^{n-1} \mathcal{N} \times \wedge^{n-1} \mathcal{N} \to \wedge^{n-1} \mathcal{N}$ by $[x, y]_{\alpha} = L(x) \bullet_{\alpha} y = \sum_{i=0}^{n-1} (\alpha(y_1), \dots, L(x).y_i, \dots, \alpha(y_{n-1})).$

• The map $\bar{\phi} : \wedge^{n-1} \mathcal{N} \to \wedge^{n-1} \mathcal{N}'$ by $\bar{\phi}(x) = \phi(x_1) \wedge \ldots \wedge \phi(x_{n-1}).$

We denote by $\mathcal{L}(\mathcal{N})$ the space $\wedge^{n-1}\mathcal{N}$ and we call it the fundamental set.

Lemma 2.8. Let $(\mathcal{N}, [., ..., .], \alpha)$ and $(\mathcal{N}', [., ..., .]', \alpha')$ be two multiplicative n-Hom-Lie algebras and $\phi: \mathcal{N} \to \mathcal{N}'$ be a n-Hom-Lie algebra morphism.

For $x, y \in \mathcal{L}(\mathcal{N})$ and $z \in \mathcal{N}'$, we have

$$L'([x,y]_{\alpha}) \cdot \alpha'(z) = L'(\alpha(x)) \cdot L'(y) \cdot z - L'(\alpha(y)) \cdot L'(x) \cdot z.$$

Proof.

$$L'(\alpha(x_{1}), \dots, \alpha(x_{n-1})) \cdot L'(y_{1}, \dots, y_{n-1}) \cdot \alpha'(y_{n})$$

$$= L(\alpha(x_{1}), \dots, \alpha(x_{n-1})) \cdot ([\phi(y_{1}), \dots, \phi(y_{n-1}), \alpha'(y_{n})]')$$

$$= [\phi(\alpha(x_{1})), \dots, \phi(\alpha(x_{n-1})), [\phi(y_{1}), \dots, \phi(y_{n-1}), \alpha'(y_{n})]']$$

$$= \sum_{i=1}^{n-1} [\phi(\alpha(y_{1})), \dots, \phi(\alpha(y_{i-1})), [\phi(x_{1}), \dots, \phi(x_{n-1}), \alpha'(y_{n})]']$$

$$+ [\phi(\alpha(y_{1})), \dots, \phi(\alpha(y_{n-1})), [\phi(x_{1}), \dots, \phi(x_{n-1}), \alpha'(y_{n})]']$$

$$= \sum_{i=1}^{n-1} [\phi(\alpha(y_{1})), \dots, \phi(\alpha(y_{n-1})), \phi(\alpha(x_{n-1}), \alpha'(y_{n-1}))]'$$

$$+ [\phi(\alpha(y_{1})), \dots, \phi(\alpha(y_{n-1})), [\phi(x_{1}), \dots, \phi(x_{n-1}), \alpha'(y_{n})]']$$

$$+ [\phi(\alpha(y_{1})), \dots, \phi(\alpha(y_{n-1})), [\phi(x_{1}), \dots, \phi(x_{n-1}), \alpha'(y_{n})]']$$

On the other hand,

$$L'([x,y]_{\alpha}) \cdot \alpha'(y_n) = L'(\sum_{i=1}^{n-1} (\alpha(y_1), \dots, ad(x)(y_i), \dots, \alpha(y_{n-1}))) \cdot \alpha'(y_n).$$

Thus, the result holds.

Example 2.9. Let $(\mathcal{N}, [., ..., .], \alpha)$ be a multiplicative n-Hom-Lie algebra. The map ad is a representation, where the operator v is the twist map α .

Corollary 2.10. Let $(\mathcal{N}, [., ..., .], \alpha)$ and $(\mathcal{N}', [., ..., .]', \alpha')$ be two n-Hom-Lie algebras and $\phi: \mathcal{N} \to \mathcal{N}'$ be a n-Hom-Lie algebra morphism. The map L' defined above is an adjoint representation of the n-Hom-Lie algebra $(\mathcal{N}, [., ..., .], \alpha)$ via ϕ , where the operator v is the twist map α' . Thus $M = (\mathcal{N}', L', \alpha')$ is a \mathcal{N} -module.

Moreover, we have the following fundamental result, providing a representation of a *n*-Hom-Lie algebra by a Hom-Leibniz algebra. Recall that a Hom-Leibniz algebra is a triple $(V, [-, -], \alpha)$, consisting of a vector space, a binary bracket and a linear map satisfying the following identity :

 $[[X, Y], \alpha(Z)] = [[X, Z], \alpha(Y)] + [\alpha(X), [Y, Z]].$

108

Remark 2.11. The triple $(\mathcal{L}(N), [,]_{\alpha}, \alpha)$ is a Hom-Leibniz algebra.

Notice that $\wedge^{n-1}\mathcal{N}$ merely reflects that the fundamental object $X = (x_1, \ldots, x_n) \in \wedge^{n-1}\mathcal{N}$ is antisymmetric in its arguments; it does not imply that X is a (n-1)-multivector obtained by the associative wedge product of vectors.

3 Cohomology of multiplicative *n*-Hom-Lie algebras with values in an adjoint module

The algebra valued cohomology theory was studied for multiplicative *n*-Hom-Lie algebras in [1]. The purpose of this section is to construct a cochain complex $C^*_{\alpha,\alpha'}(\mathcal{N},\mathcal{N}')$ that defines a Chevalley-Eilenberg cohomology for multiplicative *n*-Hom-Lie algebras with values in an adjoint module.

Definition 3.1. Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$ and $(\mathcal{N}', [\cdot, \ldots, \cdot]', \alpha')$ be two multiplicative n-Hom-Lie algebras and $\phi : \mathcal{N} \to \mathcal{N}'$ be a n-Hom-Lie algebra morphism. Regard \mathcal{N}' as a representation of \mathcal{N} via ϕ wherever appropriate. An (m+1)-cochain is a (m+1)-linear map $f : \otimes^m \mathcal{L}(\mathcal{N}) \land \mathcal{N} \to \mathcal{N}'$ such that

$$\alpha' \circ f(x_1, x_2, \dots, x_m, z) = f(\alpha(x_1), \alpha(x_2), \dots, \alpha(x_m), \alpha(z))$$

for all $x_1, x_2, \ldots, x_m \in \mathcal{L}(\mathcal{N})$ and $z \in \mathcal{N}$. We denote the set of (m + 1)-cochain by $C^m_{\alpha,\alpha'}(\mathcal{N},\mathcal{N}')$. For $m \geq 1$, the coboundary operator is the linear map $\delta^{m+1}: C^m_{\alpha,\alpha'}(\mathcal{N},\mathcal{N}') \to C^{m+1}_{\alpha,\alpha'}(\mathcal{N},\mathcal{N}')$ defined by

$$\delta^{m+1} f(x_1, \dots, x_m, x_{m+1}, z)$$

$$= \sum_{1 \le i \le j} (-1)^i f(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{j-1}), [x_i, x_j], \dots, \alpha(x_{m+1}), \alpha(z))$$

$$+ \sum_{i=1}^{m+1} (-1)^i f(\alpha(x_1), \dots, \widehat{\alpha(x_i)}, \dots, \alpha(x_{m+1}), ad(x_i)(z))$$

$$+ \sum_{i=1}^{m+1} (-1)^{i+1} L'(\alpha^m(x_i)) . f(x_1, \dots, \widehat{x_i}, \dots, x_{m+1}, z)$$

$$+ \sum_{i=1}^{n-1} (-1)^m [\phi(\alpha^m(x_{m+1}^1)), \dots, f(x_1, \dots, x_m, x_{m+1}^i), \dots, \phi(\alpha^m(x_{m+1}^{n-1})), \phi(\alpha^m(z))]'.$$
(3.1)

Theorem 1. The pair $(\mathcal{C}^*(\mathcal{N}, \mathcal{N}'), \delta)$ defines a cochain complex. The corresponding cohomology, denoted by $H^*(\mathcal{N}, \mathcal{N}')$, is called the cohomology of the n-Hom-Lie algebra \mathcal{N} with coefficients in the representation \mathcal{N}' .

Proof. The operator is well defined since $\delta^{m+1}(f) \circ (\overline{\alpha}^{\otimes (m+1)} \wedge \alpha) = \alpha' \circ \delta^{m+1}(f)$. A Straightforward computation based on the property of multiplicative algebra and the compatibility condition of the morphism ϕ with the morphisms α and α' that is $\phi \circ \alpha = \alpha' \circ \phi$ and requires some simplification using mainly Leibniz structure on $\mathcal{L}(\mathcal{N})$, leads to $\delta^{m+2} \circ \delta^{m+1} = 0$.

Remark 3.2. In the particular case where $\mathcal{N}' = \mathcal{N}$ and L' = ad, the n-Hom-Lie algebra is a \mathcal{N} -module over itself. We recover the coboundary operator defined in [1]. One considers the previous definition with L' = ad and the last sum without ϕ and denote $C^n_{\alpha,\alpha'}(\mathcal{N},\mathcal{N}')$ by $C^n_{\alpha}(\mathcal{N},\mathcal{N})$.

3.1 Cohomology of multiplicative *n*-Hom-Lie algebra morphisms

The original cohomology theory associated to deformation of Lie algebra morphisms was developed by Frégier in [9]. The aim of this part is to define explicitly a cochain complex with a coboundary operator and the *n*-cochains module $C^m(\phi, \phi)$ providing a cohomology of *n*-Hom-Lie algebra morphisms.

Let $\phi : \mathcal{N} \to \mathcal{N}'$ be a multiplicative *n*-Hom-Lie algebra morphism. Regard \mathcal{N}' as a representation of \mathcal{N} via ϕ wherever appropriate. We define the module of (m + 1)-cochains of the morphism ϕ to be

$$\mathcal{C}^{m}(\phi,\phi) = \mathcal{C}^{m}_{\alpha}(\mathcal{N},\mathcal{N}) \otimes \mathcal{C}^{m}_{\alpha'}(\mathcal{N}',\mathcal{N}') \otimes \mathcal{C}^{m-1}_{\alpha\,\alpha'}(\mathcal{N},\mathcal{N}'),$$

where $\mathcal{C}^m_{\alpha}(\mathcal{N}, \mathcal{N})$ is defined in Remark 3.2 and $\mathcal{C}^{m-1}_{\alpha,\alpha'}(\mathcal{N}, \mathcal{N}')$ is given in Definition 3.1. The coboundary operator $\delta^{m+1}: \mathcal{C}^m(\phi, \phi) \to \mathcal{C}^{m+1}(\phi, \phi)$ is defined by

$$\delta^{m+1}(\varphi_1,\varphi_2,\varphi_3) = (\delta^{m+1}\varphi_1,\delta^{m+1}\varphi_2,\delta^m\varphi_3 + (-1)^m(\phi\circ\varphi_1 - \varphi_2\circ(\bar{\phi}^{\otimes m}\wedge\phi))),$$

where $\delta^{m+1}\varphi_1$ and $\delta^{m+1}\varphi_2$ are defined in [1] and $\delta^m\varphi_3$ by (3.1).

Proposition 3.3. We have $\delta^{m+2} \circ \delta^{m+1} = 0$. Hence $(C^*(\phi, \phi), \delta)$ is a cochain complex. The corresponding cohomology is denoted by $H^*(\phi, \phi)$.

4 Deformations of *n*-Hom-Lie algebra morphisms

In this section, we aim to study one parameter formal deformations of *n*-Hom-Lie algebra morphisms. Deformations of *n*-Hom-Lie algebras have been discussed in terms of Chevalley-Eilenberg cohomology, see [1]. Recall that the main idea is to change the scalar field \mathbb{K} to a formal power series ring $\mathbb{K}[t]$, in one variable *t*. The main results provide cohomological interpretations.

Let $\mathcal{N}\llbracket t \rrbracket$ be the set of formal power series whose coefficients are elements of the vector space \mathcal{N} , $(\mathcal{N}\llbracket t \rrbracket)$ is obtained by extending the coefficients domain of \mathcal{N} from \mathbb{K} to $\mathbb{K}\llbracket t \rrbracket)$. Given a \mathbb{K} -*n*-linear map $\varphi : \mathcal{N} \times \ldots \times \mathcal{N} \to \mathcal{N}$, it admits naturally an extension to a $\mathbb{K}\llbracket t \rrbracket$ -*n*-linear map $\varphi : \mathcal{N}\llbracket t \rrbracket \times \ldots \times \mathcal{N} \llbracket t \rrbracket \to \mathcal{N}\llbracket t \rrbracket$, that is, if $x_i = \sum_{j \ge 0} a_i^j t^j$, $1 \le i \le n$ then $\varphi(x_1, \ldots, x_n) = \sum_{j_1, \ldots, j_n \ge 0} t^{j_1 + \ldots + j_n} \varphi(a_1^{j_1}, \ldots, a_n^{j_n}).$

Definition 4.1. A deformation of a multiplicative n-Hom-Lie algebra $(\mathcal{N}, [., ..., .], \alpha)$ is given by a $\mathbb{K}[t]$ -n-linear map $[\cdot, ..., \cdot]_t : \mathcal{N}[t] \times \cdots \times \mathcal{N}[t] \to \mathcal{N}[t]$ of the form $[\cdot, ..., \cdot]_t = \sum_{i \ge 0} t^i [\cdot, ..., \cdot]_i$, where each $[\cdot, ..., \cdot]_i$ is a \mathbb{K} -n-linear $[\cdot, ..., \cdot]_i : \mathcal{N} \times \ldots \times \mathcal{N} \to \mathcal{N}$ and

 $[\cdot,\ldots,\cdot]_0 = [\cdot,\ldots,\cdot]$ such that

$$[\alpha(x_1, \dots, \alpha(x_{n-1}), [y_1, \dots, y_n]_t]_t$$

= $\sum_{i=1}^{n-1} [\alpha(y_1), \dots, \alpha(y_{i-1}), [x_1, \dots, x_{n-1}, y_i]_t, \alpha(y_{i+1}), \dots, \alpha(y_n)]_t$ (4.1)

Let $\phi : \mathcal{N} \to \mathcal{N}'$ be a n-Hom-Lie algebra morphism. Define a deformation of ϕ to be a triple $\Theta_t = ([., ..., .]_{\mathcal{N},t}, [., ..., .]_{\mathcal{N}',t}, \phi_t)$ in which

- $[\cdot, \ldots, \cdot]_{\mathcal{N},t} = \sum_{i=0}^{\infty} [\cdot, \ldots, \cdot]_{\mathcal{N},i} t^i$ is a deformation of \mathcal{N} ,
- $[\cdot, \ldots, \cdot]_{\mathcal{N}', t} = \sum_{i=0}^{\infty} [\cdot, \ldots, \cdot]_{\mathcal{N}', i} t^i$ is a deformation of \mathcal{N}' ,
- $\phi_t : \mathcal{N}\llbrackett\rrbracket \to \mathcal{N}'\llbrackett\rrbracket$ is a deformation of the n-Hom-Lie algebra morphism of the form $\phi_t = \sum_{i=0}^{\infty} \phi_i t^i$ where each $\phi_i : \mathcal{N} \to \mathcal{N}'$ is a K-linear map and $\phi_0 = \phi$, such that ϕ_t satisfies the following equations

$$\phi_t([x_1,\ldots,x_n]_{\mathcal{N},t}) = [\phi_t(x_1),\ldots,\phi_t(x_n)]_{\mathcal{N}',t} \quad and \quad \phi_t \circ \alpha = \alpha' \circ \phi_t.$$
(4.2)

The deformation is said of order N if the sums run from 0 to N.

Remark 4.2. Equation (4.1) can be expressed as

$$L_t([x,y]_\alpha) \cdot \alpha(y_n) = L_t(\alpha(x)) \cdot (L_t(y) \cdot y_n) - L_t(\alpha(y)) \cdot (L_t(x) \cdot y_n),$$

where $x = (x_1, \ldots, x_{n-1}), y = (y_1, \ldots, y_{n-1})$ and $L_t(x) \cdot y_n = [x_1, \ldots, x_{n-1}, y_n]_t$.

Proposition 4.3. The linear coefficient, $\theta_1 = ([.,.]_{\mathcal{N},1}, [.,.]_{\mathcal{N}',1}, \phi_1)$, which is called the infinitesimal of the deformation Θ_t of ϕ , is a 2-cocycle in $C^2(\phi, \phi)$.

Definition 4.4. (1) Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$ be a n-Hom-Lie algebra. Let $\mathcal{N}_t = (\mathcal{N}\llbracket t \rrbracket, [., \ldots, .]_t, \alpha)$ and $\mathcal{N}'_t = (\mathcal{N}\llbracket t \rrbracket, [\cdot, \ldots, \cdot]'_t, \alpha)$ be two deformations of \mathcal{N} . We say that \mathcal{N}_t and \mathcal{N}'_t are equivalent if there exists a formal automorphism $\psi_t : \mathcal{N}\llbracket t \rrbracket \to \mathcal{N}\llbracket t \rrbracket$ that may be written in the form $\psi_t = \sum_{i \ge 0} \psi_i t^i$, where $\psi_i \in End(\mathcal{N})$ and $\psi_0 = Id$ and such that

$$\psi_t([x_1,\ldots,x_n]_t) = [\psi_t(x_1),\ldots,\psi_t(x_n)]'_t \quad and \quad \psi_t \circ \alpha = \alpha \circ \psi_t.$$

(2) Let $\Theta_t = ([\cdot, \ldots, \cdot]_{\mathcal{N},t}, [\cdot, \ldots, \cdot]_{\mathcal{L},t}, \phi_t)$ and $\widetilde{\Theta}_t = ([\cdot, \ldots, \cdot]'_{\mathcal{N},t}, [\cdot, \ldots, \cdot]'_{\mathcal{L},t}, \widetilde{\phi}_t)$ be two deformations of a n-Hom-Lie algebra morphism $\phi : \mathcal{N} \to \mathcal{L}$. A formal automorphism $\phi_t : \Theta_t \to \widetilde{\Theta}_t$ is a pair $(\psi_{\mathcal{N},t}, \psi_{\mathcal{L},t})$, where $\psi_{\mathcal{N},t} : \mathcal{N}[t] \to \mathcal{N}[t]$ and $\psi_{\mathcal{L},t} : \mathcal{L}[t] \to \mathcal{L}[t]$ are formal automorphisms, such that $\widetilde{\phi}_t = \psi_{\mathcal{L},t} \phi_t \psi_{\mathcal{N},t}^{-1}$. Two deformations Θ_t and $\widetilde{\Theta}_t$ are equivalent if and only if there exists a formal automorphism $\Theta_t \to \widetilde{\Theta}_t$.

Theorem 2. The infinitesimal of a deformation Θ_t of ϕ is a 2-cocycle in $C^2(\phi, \phi)$ whose cohomology class is determined by the equivalence class of the first term of Θ_t .

Theorem 3. Let $(\mathcal{N}, [., \ldots, .]_{\mathcal{N}})$ and $(\mathcal{N}', [., \ldots, .]_{\mathcal{N}'})$ be two n-Hom-Lie algebras. Let $\Theta_t = ([., \ldots, .]_{\mathcal{N},t}, [., \ldots, .]_{\mathcal{N}',t}, \phi_t)$ be a deformation of a n-Hom-Lie algebra morphism $\phi : \mathcal{N} \to \mathcal{N}'$. Then, there exists an equivalent deformation $\widetilde{\Theta}_t = ([., \ldots, .]'_{\mathcal{N},t}, [., \ldots, .]'_{\mathcal{N}',t}, \widetilde{\phi}_t)$ such that $\widetilde{\theta}_1 \in Z^2(\phi, \phi)$ and $\widetilde{\theta}_1 \notin B^2(\phi, \phi)$. Hence, if $H^2(\phi, \phi) = 0$ then every formal deformation is equivalent to a trivial deformation.

Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$ and $(\mathcal{N}', [\cdot, \ldots, \cdot]', \alpha')$ be two *n*-Hom-Lie algebras and let ϕ be a *n*-Hom-Lie algebra morphism. A deformation of order N of ϕ is a triple

$$\Theta_t = ([\cdot, \ldots, \cdot]_t; [\cdot, \ldots, \cdot]'_t; \phi_t),$$

where $[\cdot, \ldots, \cdot]_t = \sum_{i=0}^N [\cdot, \ldots, \cdot]_i t^i$, $[\cdot, \ldots, \cdot]'_t = \sum_{i=0}^N [\cdot, \ldots, \cdot]'_i t^i$ and $\psi_t = \sum_{i=0}^N \psi_i t^i$, satisfying $\phi_t([x_1, \ldots, x_n]_t) = [\phi_t(x_1), \ldots, \phi_t(x_n)]'_t$. Given a deformation Θ_t of order N, it extends to a deformation of order N + 1 if and only if there exists a 2-cochain θ_{N+1} such that $\overline{\Theta}_t = \Theta_t + t^{N+1}\theta_{N+1}$ is a deformation of order N + 1. The deformation $\overline{\Theta}_t$ is called an order N + 1 extension of Θ_t .

Set $\mathcal{O}b_{\mathcal{N}}$ (resp. $\mathcal{O}b_{\mathcal{N}'}$) be the obstruction of a deformation of a *n*-Hom-Lie algebra \mathcal{N} (resp. \mathcal{N}'):

$$\mathcal{O}b_{\mathcal{N}} = -\sum_{\substack{k+l=N+1\\k,l>0}} [\alpha(x_{1}^{1}), \dots, \alpha(x_{1}^{n-1}), [x_{2}^{1}, \dots, x_{2}^{n-1}, z]_{k}]_{l}$$

$$+ \sum_{\substack{k+l=N+1\\k,l>0}} \sum_{\substack{i=1\\k,l>0}}^{n-1} [\alpha(x_{2}^{1}), \dots, \alpha(x_{2}^{i-1}), [x_{1}^{1}, \dots, x_{1}^{n-1}, x_{2}^{i}]_{k}, \alpha(x_{2}^{i+1}), \dots, \alpha(x_{2}^{n-1}), \alpha(z)]_{l}$$

$$+ \sum_{\substack{k+l=N+1\\k,l>0}} [\alpha(x_{2}^{1}), \dots, \alpha(x_{2}^{n-1}), [x_{1}^{1}, \dots, x_{1}^{n-1}, z]_{k}]_{l}.$$

Let $\mathcal{O}b_{\phi}$ be the obstruction of the extension of the *n*-Hom-Lie algebra morphism ϕ :

$$\mathcal{O}b_{\phi} = \sum_{\substack{i+j=N+1\\i,j>0}} \phi_i \circ [x_1, \dots, x_n]_j - \sum' [\phi_{l_1}(x_1), \cdots, \phi_{l_i}(x_i), \cdots, \phi_{i_n}(x_n)]'_j.$$

with

$$\sum_{i=1}^{\prime} \sum_{\substack{l_{i}>0\\1\leq i\leq n}} \sum_{i=1}^{N} \sum_{\substack{l_{i}>0\\1\leq i\leq n}} \sum_{\substack{l_{i}+\dots+\hat{l_{i}}+\dots+l_{n}>0\\1\leq i\leq n}} \sum_{i=1}^{n} \sum_{\substack{l_{i}+\dots+\hat{l_{i}}+\dots+l_{n}=N+1-l_{i}\\l_{i}>0,j=0\\1\leq i\leq n}} \sum_{i=1}^{N} \sum_{\substack{l_{i}+\dots+l_{n}=N+1-l_{i}\\l_{i}>0,j=0\\1\leq i\leq n}} \sum_{i=1}^{N} \sum_{\substack{l_{i}>0\\1\leq i\leq n}} \sum_{\substack{l_{i}>0\\1\leq i\leq$$

Theorem 4.5. Let $(\mathcal{N}, [., \ldots, .])$ and $(\mathcal{N}', [., \ldots, .]')$ be two n-Hom-Lie algebras and ϕ be a n-Hom-Lie algebra morphism. Let $\Theta_t = ([., \ldots, .]_t, [., \ldots, .]'_t, \phi_t)$ be an order N oneparameter formal deformation of ϕ . Then $\mathcal{O}b = (\mathcal{O}b_{\mathcal{N}}, \mathcal{O}b_{\mathcal{N}'}, \mathcal{O}b_{\phi}) \in Z^3(\phi, \phi)$. Therefore the deformation extends to a deformation of order N + 1 if and only if $\mathcal{O}b$ is a coboundary.

5 Morphisms of ternary Hom-Lie algebras induced by morphisms of Hom-Lie algebras

In [4] and [5], the authors introduced a construction of a 3-Hom-Lie algebra (ternary Hom-Lie algebras) from a Hom-Lie algebra along a linear form, and more generally a (n + 1)-Hom-Lie algebra from a *n*-Hom-Lie algebra, called (n + 1)-Hom-Lie algebra induced by *n*-Hom-Lie algebra. In this section we will investigate morphisms of 3-Hom-Lie algebras induced by morphisms of Hom-Lie algebras.

Definition 5.1. Let $\varphi_{\tau} : \mathcal{N}^n \to \mathcal{N}$ be a n-linear map and $\tau : \mathcal{N} \to \mathbb{K}$ be a linear form. Define $\varphi_{\tau} : \mathcal{N}^{n+1} \to \mathcal{N}$ by

$$\varphi_{\tau}(x_1, \dots, x_n) = \sum_{k=1}^{n+1} (-1)^{k-1} \tau(x_k) \varphi(x_1, \dots, \hat{x}_k, \dots, x_{n+1})$$

where the hat over \hat{x}_k on the right hand side means that x_k is excluded, that is φ is calculated on $(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1})$.

Definition 5.2. For $\varphi : \mathcal{N}^n \to \mathcal{N}$, we call a linear map $\tau : \mathcal{N} \to \mathbb{K}$ a φ -trace or trace map if

$$\tau(\varphi(x_1,\ldots,x_n))=0 \text{ for all } x_1,\ldots,x_n \in \mathcal{N}.$$

Theorem 5.3. [4, 5, 13] Let $(\mathcal{N}, \varphi, \alpha_1, \ldots, \alpha_n)$ be a n-Hom-Lie algebra and τ a φ -trace. If $\tau \circ \alpha_i = \tau$ for $i = 1, \ldots, n$ then $(\mathcal{N}, \varphi_\tau, \alpha_1, \ldots, \alpha_{n+1})$ is a (n+1)-Hom-Lie algebra. Moreover, if (A, φ, α) is a multiplicative n-Hom-Lie algebra, then, under the same condition, $(A, \varphi_\tau, \alpha)$ is a multiplicative (n+1)-Hom-Lie algebra.

Let $(\mathcal{N}_1, [.,.]_1, \alpha_1)$ and $(\mathcal{N}_2, [.,.]_2, \alpha_2)$ be two Hom-Lie algebras. let τ_1 be a $[.,.]_1$ -trace and τ_2 be a $[.,.]_2$ -trace. Let $(\mathcal{N}_{\tau,1}, [.,.,.]_{\tau_1}, \alpha_1)$ and $(\mathcal{N}_{\tau,2}, [.,.,]_{\tau_2}, \alpha_2)$ be two 3-Hom-Lie algebras induced respectively by $(\mathcal{N}_1, [.,.]_1, \alpha_2)$ and $(\mathcal{N}_2, [.,.]_2, \alpha_2)$. Let $\phi : \mathcal{N}_1 \to \mathcal{N}_2$ be a Hom-Lie algebra morphism between $(\mathcal{N}_1, [.,.]_1, \alpha_1)$ and $(\mathcal{N}_2, [.,.]_1, \alpha_2)$, i.e. $\phi([x,y]_1) = [\phi(x), \phi(y)]_2$. We want to extend this morphism to induced ternary Hom-Lie algebras. We should have

$$\phi([x, y, z]_{\tau_1}) = [\phi(x), \phi(y), \phi(z)]_{\tau_2}$$

according to the definition of the ternary bracket

$$\phi([x,y,z]_{\tau_1}) = \bigcirc_{x,y,z} \tau_1(x)\phi([y,z]_1) = \bigcirc_{x,y,z} \tau_1(x)[\phi(y),\phi(z)]_2$$

In the other hand,

$$[\phi(x), \phi(y), \phi(z)]_{\tau_2} = \bigcirc_{\phi(x), \phi(y), \phi(z)} \tau_2(\phi(x)) [\phi(y), \phi(z)]_2$$

A theorem for constructing 3-Hom-Lie algebra morphism induced by Hom-Lie algebra can be formulated as follows:

Theorem 5.4. The map ϕ is a morphism of 3-Hom-Lie algebras induced by binary Hom-Lie algebras morphism if $\tau_2(\phi) = \tau_1$.

Remark 5.5. A necessary and sufficient condition for the construction of 3-Hom-Lie algebra morphism induced by Hom-Lie algebra morphism can be written as

$$(\tau_1(x) - \tau_2(\phi(x))[\phi(y), \phi(z)] + (\tau_1(y) - \tau_2(\phi(y))[\phi(z), \phi(x)] + (\tau_1(z) - \tau_2(\phi(z))[\phi(x), (y)] = 0,$$

for all $x, y, z \in \mathcal{N}_1$.

The previous results can easily and similarly stated for general situation of (n+1)-Hom-Lie algebras induced by *n*-Hom-Lie algebras.

5.1 Cohomology

In this section, we study the connections between the cohomology of a given *n*-Hom-Lie algebra morphism and the cohomology of the induced (n + 1)-Hom-Lie algebra morphism.

Proposition 5.6. [13] Let $(\mathcal{N}, [\cdot, \ldots, \cdot], \alpha)$ be a multiplicative n-Hom-Lie algebra, τ be a trace map and $(\mathcal{N}, [\cdot, \ldots, \cdot]_{\tau_1}, \alpha_1)$ be the induced multiplicative (n+1)-Hom-Lie algebra. Let $\varphi \in Z^2(\mathcal{N}, \mathcal{N})$ such that:

1.
$$\sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} (-1)^{k+n-1} \tau(y_i) \tau(y_k) \varphi(y_1, \cdots, \hat{y}_k, \dots, y_{i-1}, X_n \cdot x_n, y_{i+1}, \dots, y_n, z),$$

2.
$$\sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n} (-1)^{k+n-1} \tau(y_i) \tau(y_k) [y_1, \cdots, \hat{y}_k, \dots, y_{i-1}, \varphi(X_n, x_n), y_{i+1}, \dots, y_n, z],$$

3.
$$\tau \circ \varphi = 0.$$

Then $\varphi_{\tau}(X, z) = \sum_{i=1}^{n} (-1)^{i-1} \tau(x_i) \varphi(X_i, z) + (-1)^n \tau(z) \varphi(X_n, x_n)$ is a 2-cocyle of the induced (n+1)-Hom Lie algebra for $X = x_1 \wedge \ldots \wedge x_n \in \wedge^n \mathcal{N}, X_i = x_1 \wedge \ldots \wedge x_{i-1} \wedge x_{i+1} \wedge \ldots \wedge x_n \in \wedge^{n-1} \mathcal{N}.$

Theorem 5.7. Let $(\mathcal{N}_1, [\cdot, \ldots, \cdot], \alpha_1)$ (resp. $\mathcal{N}_2, [\cdot, \ldots, \cdot], \alpha_2$)) be a multiplicative n-Hom Lie algebra, τ_1 (resp. τ_2) be a trace map and $(\mathcal{N}_{\tau_1}, [\cdot, \ldots, \cdot]_{\tau_1}, \alpha_1)$ (resp. $(\mathcal{N}_{\tau_2}, [\cdot, \ldots, \cdot]_{\tau_2}, \alpha_2)$) be the induced multiplicative (n+1)-Hom-Lie algebra. Let ϕ be a morphism of (n+1)-Hom-Lie algebra.

Let $\varphi_{\tau_1}(X, z)$ be a 2-cocyle of the induced (n+1)-Hom Lie algebra $(\mathcal{N}_{\tau,1}, [., \ldots, .]_{\tau_1}, \alpha_1)$ (resp. $\varphi_{\tau_2}(X, z)$ a 2-cocyle of the induced (n+1)-Hom Lie algebra $(\mathcal{N}_{\tau_2}, [., \ldots, .]_{\tau_2}, \alpha_2)$ defined in the pervious proposition. Let $\rho \in Z^1(\mathcal{N}_1, \mathcal{N}_2)$. Then $\rho_{\tau}(x_j) = \sum_{i=1i\neq j}^n (-1)^{i-1}\tau_1(x_i)\rho(x_i) + (-1)^n - (x_j)\rho(x_j)$ is a 1-cocyle of the induced (n+1)-Hom Lie algebra $(x_j) = \sum_{i=1i\neq j}^n (-1)^{i-1}\tau_1(x_i)\rho(x_i) + (-1)^n - (x_j)\rho(x_j)$.

 $(-1)^n \tau_1(z) \rho(x_n)$ is a 1-cocyle of the induced (n+1)-Hom-Lie algebra morphism. Hence $(\varphi_{\tau_1}, \varphi_{\tau_2}, \rho_{\tau})$ is a 2-cocycle in $Z^2(\phi, \phi)$.

Proof. Let $\varphi_{\tau_1}(X, z) \in Z^2(\mathcal{N}_{\tau_1}, \mathcal{N}_{\tau_1})$ and $\varphi_{\tau_2}(X, z) \in Z^2(\mathcal{N}_{\tau_2}, \mathcal{N}_{\tau_2})$ satisfying the condition above, then

$$\delta^{2} \rho_{\tau}(X, z) = \phi \circ \varphi_{1,\tau}(X, z) - \varphi_{2,\tau}(\phi, \phi)(X, z) - \delta^{1} \rho_{\tau}(X, z)$$
$$= \sum_{i=1}^{n} (-1)^{i-1} \tau_{1}(x_{i}) \phi \circ \varphi_{1}(X_{i}, z) + (-1)^{n} \tau_{1}(z) \phi \circ \varphi_{1}(X_{n}, x_{n})$$

$$-\sum_{i=1}^{n} (-1)^{i-1} \tau_{2}(\phi(x_{i})) \varphi_{2}(\phi(X_{i}), \phi(z)) - (-1)^{n} \tau_{2}(z) \varphi_{2}(\phi(X_{n}), \phi(x_{n}))$$

$$-\sum_{j=1}^{n} \sum_{i=1}^{n} (-1)^{i-1} \tau_{1}(x_{i}) [\phi(x_{1}), \dots, \rho(x_{i}), \dots, \phi(x_{n}), \phi(z)]$$

$$- (-1)^{n} \tau(z) [\phi(x_{1}), \dots, \rho(x_{i}), \dots, \phi(x_{n-1}), \phi(x_{n})]$$

$$+\sum_{i=1}^{n} (-1)^{i-1} \tau_{1}(x_{i}) \rho([x_{1}, \dots, x_{i-1}, x_{i+1}, x_{n}, z]) + (-1)^{n} \tau_{1}(z) \rho([x_{1}, \dots, x_{n-1}, x_{n}])$$

$$=\sum_{i=1}^{n} (-1)^{i-1} \tau_{1}(x_{i}) \delta^{2} \rho(X_{i}, z) + (-1)^{n} \tau_{1}(z) \delta^{2} \rho(X_{n}, x_{n}) = 0 + 0 = 0$$

5.2 Deformations

Let $(\mathcal{N}_1, [\cdot, \ldots, \cdot], \alpha_1)$ (resp. $\mathcal{N}_2, [\cdot, \ldots, \cdot], \alpha_2)$) be a multiplicative *n*-Hom Lie algebra, τ_1 (resp. τ_2) be a trace and $(\mathcal{N}_{\tau_1}, [\cdot, \ldots, \cdot]_{\tau_1}, \alpha_1)$ (resp. $(\mathcal{N}_{\tau_2}, [\cdot, \ldots, \cdot]_{\tau_2}, \alpha_2)$) be the induced multiplicative (n + 1)-Hom-Lie algebra. Let ϕ be the morphism of (n + 1)-Hom-Lie algebra induced by a morphism of a *n*-Hom-Lie algebra.

Now, let $[\cdot, \cdot]_{1,t} = \sum_{i=0}^{\infty} [\cdot, \cdot]_{1,i} t^i$ be a one-parameter formal deformation of \mathcal{N}_1 and $[\cdot, \cdot]_{2,t} = \sum_{i=0}^{\infty} [\cdot, \cdot]_{2,i} t^i$ be a one-parameter formal deformation of \mathcal{N}_2 . Let $\phi_t : \mathcal{N}_1[\![t]\!] \to \mathcal{N}_2[\![t]\!]$ be a deformation of the Hom-Lie algebra morphism $\phi : \mathcal{N}_1 \to \mathcal{N}_2$ of the form $\phi_t = \sum_{n=0}^{\infty} \phi_n t^n$ such that the table is the table of the full statement if

that ϕ_t satisfies the following equation

$$\phi_t([x_1, x_2]_{1,t}) = [\phi_t(x_1), \phi_t(x_2)]_{2,t}$$
 and $\phi_t \circ \alpha_1 = \alpha_2 \circ \phi_t.$

Assume that τ_1 satisfies $\tau_1([x, y]_{1,t}) = 0$, then $[., ., .]_{\tau_1,t}$ is a one parameter formal deformation of the induced 3-Hom Lie algebra $(\mathcal{N}_1, [., ., .]_{\tau_1,t}, \alpha_1)$ if

$$[x, y, z]_{\tau_1, t} = \bigcirc_{x, y, z} \tau_1(x) [y, z]_{1, t} = \sum_{i=0}^k t^i \bigcirc_{x, y, z} \tau_1(x) [y, z]_{1, i}.$$

Also, assume that τ_2 satisfies $\tau_1([x, y]_{2,t}) = 0$. Then $[., ., .]_{\tau_2}$ is a one parameter formal deformation of the induced 3-Hom-Lie algebra $(\mathcal{N}_2, [., ., .]_{\tau_1}, \alpha_2)$ if

$$[x, y, z]_{\tau_2, t} = \bigcirc_{x, y, z} \tau_2(x) [y, z]_{2, t} = \sum_{i=0}^k t^i \oslash_{x, y, z} \tau_1(x) [y, z]_{2, i}.$$

Furthermore, ϕ_t is a deformation of the induced morphism ϕ , if

$$\phi_t([x, y, z]_{\tau_1, t}) = \bigcirc_{x, y, z} \tau_1(x) \phi_t([y, z]_{1, t}) = \bigcirc_{x, y, z} \tau_1(x) [\phi(y), \phi(z)]_{2, t}.$$

In the other hand

$$\phi_t(x), \phi_t(y), \phi_t(z)]_{\tau_2, t} = \bigcirc_{\phi_t(x), \phi_t(y), \phi_t(z)} \tau_2(\phi_t(x)) [\phi_t(y), \phi_t(z)]_{\tau_2, t}.$$

Then ϕ_t is a deformation of the induced (n + 1)-Hom-Lie algebra morphism if $\tau_1(x) = \tau_2(\phi_t(x))$.

Example 1. Consider the table below, which gives an example of construction of two induced multiplicative 3-Hom-Lie algebras (given in [13]).

Hom-Lie algebra	Trace	induced 3-Hom-Lie algebra				
$[e_1, e_2]_1 = e_4$		$[e_1, e_2, e_3]_{1, au} = e_4$				
$[e_3, e_4]_1 = e_2$	$\tau_1(x) = x_1 + x_3$	$[e_1, e_3, e_4]_{1,\tau} = e_2$				
$\alpha_1(e_1) = e_3 + e_4; \ \alpha_1(e_2) = e_4$		$\alpha_1(e_1) = e_3 + e_4; \ \alpha_1(e_2) = e_4$				
$\alpha_1(e_3) = e_1 + e_2; \ \alpha_1(e_4) = e_2$		$\alpha_1(e_3) = e_1 + e_2; \ \alpha_1(e_4) = e_2$				
$[f_1, f_2]_2 = f_4;$		$[f_1,f_2,f_3]_{2, au}=f_4$				
$\alpha_2(f_1) = f_1 + f_2 + f_3 + f_4$	$\tau_2(x) = x_1$	$\alpha_2(f_1) = f_1 + f_2 + f_3 + f_4$				
$\alpha_2(f_2) = f_4$		$\alpha_2(f_2) = f_4;$				
$\alpha_2(f_3) = 0; \ \alpha_2(f_4) = 0$		$\alpha_2(f_3) = 0; \ \alpha_2(f_4) = 0$				
Morphism of Hom-Lie algebra						
$\phi(e_1) = \lambda_{1,1}f_1 + \lambda_{1,1}f_2 + \lambda_{1,1}f_3 + 2\lambda_{1,1}f_4; \phi(e_2) = 0$						
$\phi(e_3) = \lambda_{1,1}f_1 + \lambda_{1,1}f_2 + \lambda_{1,1}f_3 + 2\lambda_{1,1}f_4; \phi(e_4) = 0$						
Morphism of 3-Hom-Lie alg	gebra induced by mo	orphism of Hom-Lie algebra				
$\phi(e_1) = 1$	$f_1 + f_2 + f_3 + 2f_4;$	$\phi(e_2) = 0$				
$\phi(e_3) = 1$	$f_1 + f_2 + f_3 + 2f_4;$	$\phi(e_4) = 0$				

Let $(A_1, [,]_1, \alpha_1)$ be the first Hom-Lie algebra and $(A_2, [,]_2, \alpha_2)$ be the second Hom-Lie algebra. We denote by $(A_{\tau_1}, [., ., .]_{\tau_1}, \alpha)$ the multiplicative 3-Hom-Lie algebra induced by the first Hom-Lie algebra and $(B_{\tau_2}, [., ., .]_{\tau_1}, \alpha)$ the multiplicative 3-Hom-Lie algebra induced by the second Hom-Lie algebra. We construct the morphisms ϕ of 3-Hom-Lie algebras induced by the morphisms of Hom-Lie algebras, satisfying the condition $\tau_2(\phi) = \tau_1$, where τ_1 is a $[,]_1$ -trace and τ_2 is a $[,]_2$ -trace.

Denote the structure constants of a Hom-Lie algebra $(A, [.,.], \alpha)$ of dimension n with respect to a basis $B = \{e_1, \ldots, e_n\}$, by $(c_{i,j}^k)_{1 \le i,j,k \le n}$ and by $(C_{i,j,k}^q)_{1 \le i,j,k,q \le n}$ those of the induced 3-Hom-Lie algebra $(A, [.,.,.]_{\tau})$. A linear map $\alpha : A \to A$ will be represented by a $n \times n$ matrix, $b = (b_i^j)_{1 \le i,j \le n}$. A bilinear map $\varphi : A \otimes A \to A$ (2-cochain) will be represented by $n \times n$ matrix, $p = (p_{i,j}^k)_{1 \le i,j,k \le n}$. The condition for φ (represented by the matrix p) to be a 2-cocycle for a Hom-Lie algebra is written as follows

$$\sum_{s=1}^{n} (\sum_{v=1}^{n} -c_{jk}^{s} b_{v}^{i} a_{sv}^{o} + c_{ik}^{s} b_{v}^{j} a_{sv}^{o} - c_{ij}^{s} b_{v}^{k} a_{sv}^{o} + b_{s}^{i} a_{jk}^{v} c_{sv}^{o} - b_{s}^{j} a_{ik}^{v} c_{sv}^{o} + b_{s}^{k} a_{ij}^{v} c_{sv}^{o}) = 0.$$
(5.1)

A trilinear map ψ : $A \otimes A \otimes A \rightarrow A$ (2-cochain) will be represented by a $n \times n$ matrix, $a = (a_{i,j,k}^v)_{1 \leq i,j,k,v \leq n}$. The condition for ψ (represented by the matrix a) to be a 2-cocycle for a 3-Hom-Lie algebra is written as follows

$$\sum_{s=1}^{n} \left(\sum_{t=1}^{n} \left(\sum_{v=1}^{n} -C_{i,j,k}^{s} b_{t}^{q} b_{v}^{p} a_{s,t,v}^{o} - b_{s}^{k} C_{i,j,q}^{t} b_{v}^{p} a_{s,t,v}^{o} - b_{s}^{k} b_{t}^{q} C_{i,j,p}^{v} a_{s,t,v}^{o} + b_{s}^{i} b_{t}^{j} C_{k,q,p}^{v} a_{s,t,v}^{o} + b_{s}^{i} b_{t}^{j} a_{k,q,p}^{v} C_{s,t,v}^{o} - b_{s}^{k} b_{t}^{q} a_{v,j,p}^{v} C_{s,t,v}^{o} - a_{i,j,k}^{s} b_{t}^{q} b_{v}^{v} C_{s,t,v}^{o} - b_{s}^{k} a_{i,j,q}^{t} b_{v}^{v} C_{s,t,v}^{o} \right) = 0$$

$$(5.2)$$

Solving the equations (5.1) for the first Hom-Lie algebra, we obtain the necessary conditions applied respectively to $p = (p_{i,j}^k)_{1 \le i,j,k \le n}$ and $b = (b_{ij})_{1 \le i,j \le n}$. We get

$$\begin{aligned} \varphi_1(e_1, e_3) &= p_1 e_2 - p_1 e_4; \quad \varphi_1(e_1, e_4) = p_2 e_2 + p_3; \quad \varphi_1(e_1, e_2) = -p_2 e_2 + p_4 e_4; \\ \varphi_1(e_2, e_3) &= -p_2 e_2 - p_3 e_4; \quad \varphi_1(e_2, e_4) = 0; \quad \varphi_1(e_3, e_4) = (p_4 - p_3) e_4, \end{aligned}$$

where p_1, p_2, p_3, p_4 are parameters. Now, for a 2-cocycle $\varphi_1 \in Z^2(A_1, A_1)$, let us consider $\varphi_{1,\tau} \in Z^2(A_{\tau_2}, A_{\tau_1})$ defined as in Proposition 5.6 [13]. We get

$$\begin{cases} \varphi_{\tau_1}(e_1, e_2, e_3) = \varphi_1(e_2, e_3) + \varphi_1(e_1, e_2) = -2p_2e_2 + (-p_3 + p_4)e_4 \\ \varphi_{\tau_1}(e_1, e_2, e_4) = \varphi_1(e_2, e_4) = 0 \\ \varphi_{\tau_1}(e_1, e_3, e_4) = \varphi_1(e_3, e_4) - \varphi_1(e_1, e_4) = -p_2 + (p_4 - 2p_3)e_4 \\ \varphi_{\tau_1}(e_2, e_3, e_4) = -\varphi_1(e_2, e_4) = 0. \end{cases}$$

All the 2-cocycles of A_{τ_1} are induced by 2-cocycles of A_1 . We eliminate all constants underlying coboundaries and we deduce that $\dim H^2(A_{\tau_1}, A_{\tau_1}) = 0$. In a similar way, we determine the 2-cocycles of the second Hom-Lie algebra A_2 . We get

where $k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_9, k_{10}$ are parameters. For a 2-cocycle $\varphi_2 \in Z^2(A_2, A_2)$, let us consider $\varphi_{2,\tau} \in Z^2(A_{\tau_2}, A_{\tau_2})$.

$$\begin{cases} \varphi_{\tau_2}(e_1, e_2, e_3) = \varphi_2(e_2, e_3) = k_5 f_3 + k_6 f_4 \\ \varphi_{\tau_2}(e_1, e_2, e_4) = \varphi_2(e_2, e_4) = k_7 f_3 + k_8 f_4 \\ \varphi_{\tau_2}(e_1, e_3, e_4) = \varphi_2(e_3, e_4) = (-k_9 - k_7) f_3 + (k_1 - k_{10} - k_8) f_4 \\ \varphi_{\tau_2}(e_2, e_3, e_4) = -\varphi_2(e_2, e_4) = 0. \end{cases}$$

Solving the equations (5.2) for the second 3-Hom-Lie algebra, we obtain the necessary conditions applied respectively to $p = (p_{i,j}^k)_{1 \le i,j,k \le n}$ and $b = (b_{ij})_{1 \le i,j \le n}$. We get, the space of 2-cocycles of A_{τ_2} is generated by

$$\psi_{\tau_2}(e_1, e_2, e_3) = c_1 f_3 + c_2 f_4
\psi_{\tau_2}(e_1, e_2, e_4) = c_3 f_3 + c_4 f_4
\psi_{\tau_2}(e_1, e_3, e_4) = c_5 f_3 + c_6 f_4
\psi_{\tau_2}(e_2, e_3, e_4) = c_7 f_3 + c_8 f_4,$$
(5.3)

There exist 2-cocycles of A_{τ_2} which are not induced by a 2-cocycle of A_2 . We eliminate all constants underlying coboundaries. Gluing these bits of information together we deduce that dim $H^2(A_{\tau_2}, A_{\tau_2})$ is equal to the number of independent constants remaining in the expression of the 2-cocycle (5.3). Thus, we can see that dim $H^2(A_{\tau_2}, A_{\tau_2}) = 5$ and spanned by the following 2-cocycles

$$\begin{array}{c} \psi_{2,1,\tau}(f_1,f_2,f_3) = 0 \\ \psi_{2,1,\tau}(f_1,f_2,f_4) = f_3 \\ \psi_{2,1,\tau}(f_1,f_3,f_4) = 0 \\ \psi_{2,1,\tau}(f_2,f_3,f_4) = 0, \end{array} \left\{ \begin{array}{c} \psi_{2,2,\tau}(f_1,f_2,f_3) = 0 \\ \psi_{2,2,\tau}(f_1,f_2,f_4) = 0 \\ \psi_{2,2,\tau}(f_1,f_3,f_4) = f_3 \\ \psi_{2,2,\tau}(f_2,f_3,f_4) = 0, \end{array} \right\} \left\{ \begin{array}{c} \psi_{2,3,\tau}(f_1,f_2,f_3) = 0 \\ \psi_{2,3,\tau}(f_1,f_2,f_4) = 0 \\ \psi_{2,3,\tau}(f_1,f_3,f_4) = f_4 \\ \psi_{2,3,\tau}(f_2,f_3,f_4) = 0. \end{array} \right. \right\}$$

$$\begin{array}{c} \psi_{2,4,\tau}(f_1,f_2,f_3) = 0 \\ \psi_{2,4,\tau}(f_1,f_2,f_4) = 0 \\ \psi_{2,4,\tau}(f_1,f_3,f_4) = 0 \\ \psi_{2,4,\tau}(f_2,f_3,f_4) = f_3. \end{array} \left\{ \begin{array}{c} \psi_{2,5,\tau}(f_1,f_2,f_3) = 0 \\ \psi_{2,5,\tau}(f_1,f_2,f_4) = 0 \\ \psi_{2,5,\tau}(f_1,f_3,f_4) = 0 \\ \psi_{2,5,\tau}(f_2,f_3,f_4) = f_4. \end{array} \right.$$

By a direct computation, using a computer algebra system, we deduce that the first space of cocycles $Z^1(A_1, A_2)$ of the Hom-Lie algebra morphism ϕ is generated by

$$\phi_1(e_1) = pf_1 + pf_2 + pf_3 + 2pf_4 = \phi_1(e_3); \quad \phi_1(e_2) = \phi_1(e_4) = 0,$$

where p is parameter.

Now, for a 2-cocycle $\phi_1 \in Z^2(A_1, A_2)$, let us consider $\phi_{1,\tau} \in Z^2(A_{\tau_1}, A_{\tau_2})$ defined as in Theorem 5.7.

$$\begin{cases} \phi_{1,\tau}(e_1) = -\tau_1(e_2)\phi_1(e_2) + \tau_1(e_3)\phi_1(e_3) - \tau_1(e_4)\phi_1(e_4) = \phi_1(e_3) \\ \phi_{1,\tau}(e_2) = \tau_1(e_1)\phi_1(e_1) - \tau_1(e_3)\phi_1(e_3) - \tau_1(e_4)\phi_1(e_4) = 0 \\ \phi_{1,\tau}(e_3) = \tau_1(e_1)\phi_1(e_1) - \tau_1(e_2)\phi_1(e_2) - \tau_1(e_4)\phi_1(e_4) = \phi_1(e_1) \\ \phi_{1,\tau}(e_4) = \tau_1(e_1)\phi_1(e_1) - \tau_1(e_2)\phi_1(e_2) - \tau_1(e_3)\phi_1(e_3) = 0 \end{cases}$$

By a direct computation, we see that all the 2-cocycles $\phi_{1,\tau}$ are induced by a 2-cocycle ϕ_1 .

References

- F. AMMAR, S. MABROUK, A. MAKHLOUF, Representation and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys., 61, 1898-1913 (2011).
- [2] A. ATAGUEMA, A. MAKHLOUF, S. SILVESTROV, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys., 50, 083501 (2009).
- [3] A. ARFA, N. BEN FRAJ, A. MAKHLOUF, Cohomology and deformations of n-Lie algebra morphisms, J. Geom. Phys., 132, 64–74 (2018).
- [4] J. ARNLIND, A. MAKHLOUF, S. SILVESTROV, Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras, J. Math. Phys., 51 (4), 043515 (2010).
- [5] J. ARNLIND, A. MAKHLOUF, S. SILVESTROV, Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras, J. Math. Phys., 52 (12), 123502 (2011).
- [6] J. ARNLIND, A. KITOUNI, A. MAKHLOUF, Structure and cohomology of 3-Lie algebras induced by Lie algebras, *Algebra, Geometry and Mathematical Physics*, Springer Proc. Math. Stat., Springer, Heidelberg, 85, 123–144 (2014).
- [7] R. BAI, Y. LI, Extensions of n-Hom-Lie algebras, Front. Math. China, 10, 511–522 (2015).
- [8] V. FILLIPPOV, n-Lie algebras, Siberian Math. J., 26, 126–140 (1985).
- [9] Y. FRÉGIER, A new cohomology theory associated to deformation of Lie algebra morphisms, *Lett. Math. Phys.*, 70, 97–107 (2004).

- [10] M. GERSTENHABER, On the deformation of rings and algebras, Ann. Math., 79, 59–103 (1964).
- [11] J. T. HARTWIG, D. LARSSON, S. SILVESTROV, Deformations of Lie algebras using σ -derivations, J. Algebra, **295**, 314-361 (2006).
- [12] S. KASYMOV, Theory of *n*-Lie algebras, Algebra Logika, 26, 277-297 (1987).
- [13] A. KITOUNI, A. MAKHLOUF, S. SILVESTROV, On (n + 1)-Hom-Lie algebras induced by *n*-Hom-Lie algebras, *Georgian Mathematical Journal*, **23**, 75-95 (2016).
- [14] A. MAKHLOUF, On Deformation of n-Lie Algebras, in Non-Associative and Non-Commutative Algebra and Operator Theory, Springer Proc. Math. Stat., Springer, Cham, 160, 55–81 (2016).
- [15] Y. NAMBU, Generalized Hamiltonian dynamics, Phys. Rev. D, (3) 7, 2405–2412 (1973).
- [16] A. NIJENHUIS, R. W. RICHARDSON, Deformation of homomorphisms of Lie group and Lie algebras, Bull. Amer. Math. Soc., 73, 175–179 (1967).
- [17] S. OKUBO, Introduction to octonions and other non-associative algebras in physics, Cambridge Univ. Press, Cambridge, UK (1995).
- [18] L. TAKHTAJAN, On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160, 295–315 (1994).

Received: 20.01.2022 Accepted: 09.03.2022

> (1) Jouf University, Department of Mathematics, College of Sciences and Arts in Gurayat, Sakakah, Saudi Arabia and University of Sfax, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia E-mail: arfaanja.mail@gmail.com

⁽²⁾ University of Carthage, Preparatory Institute for Engineering Studies of Nabeul, Tunisia E-mail: benfraj_nizar@yahoo.fr

> ⁽³⁾ University of Haute Alsace, IRIMAS - Département de Mathématiques, F-68093 Mulhouse, France E-mail: Abdenacer.Makhlouf@uha.fr