Cohomology and deformations of n-Hom-Lie algebra morphisms by Anja Arfa ${ }^{(1)}$, Nizar Ben Fraj ${ }^{(2)}$, Abdenacer Makhlouf ${ }^{(3)}$

Abstract

The main purpose of this paper is to define a cohomology complex of n-Hom-Lie algebra morphisms and consider their deformation theory. In particular, we discuss infinitesimal deformations, equivalent deformations and obstructions. Moreover, we study $(n+1)$-Hom-Lie algebra morphisms induced by n-Hom-Lie algebra morphisms and provide examples.

Key Words: n-Hom-Lie algebra, n-Hom-Lie algebra morphism, cohomology, deformation.
2020 Mathematics Subject Classification: Primary 17A40, 17A42, 17B56, 17B61, 17D30.

1 Introduction

Filippov [8] introduced n-Lie algebras which are a generalization of Lie algebras. The binary bracket is replaced by a n-ary multilinear operation which is skew-symmetric and satisfies the n-Jacobi identity or Filippov identity, for $n>2$. The motivation for ternary Lie algebras came first from Nambu mechanics [15], generalizing classical mechanics and allowing more than one hamiltonian. The algebraic formulation of this theory is due to Takhtajan [18]. Ternary operations appeared also is String Theory and were used to construct solutions of the Yang-Baxter equation [17]. Hom-type generalizations of n-Lie algebras called n-Hom-Lie algebras were introduced by Ataguema, Silvestrov and the last author in [2]. These type of algebras were motivated by q-deformations of algebras of vector fields like Witt and Virasoro algebras. Their main feature is that usual identities are twisted by linear maps. Structure, representations and extensions of n-Hom-Lie algebras were studied in [1, 7]. Methods to construct n-Hom-Lie algebras from n-Lie algebra have been discussed in [2]. Furthermore, 3-Lie or 3-Hom-Lie algebras can be obtained from Lie or Hom-Lie algebras, respectively, using a so-called trace maps, see $[4,5]$. The construction provides similarly $(n+1)$-(Hom-)Lie algebras from n-(Hom-)Lie algebras. These $(n+1)$-ary algebras are called $(n+1)$-(Hom-)Lie algebras induced by n-(Hom-)Lie algebras. The relationships between their properties have been studied in $[6,13]$.

Deformation theory is based on formal power series and is closely related to a suitable cohomology. The approach was introduced first by Gerstenhaber for rings and associative algebras using Hochschild cohomology [10] and then extended to Lie algebras, using ChevalleyEilenberg cohomology, by Nijenhuis and Richardson. They considered deformations of Lie algebras morphisms in [16], that were also studied by Frégier in [9]. Generalizations for n-Lie algebras have been considered in various papers see [14] for a review and [3] for n-Lie algebra morphisms. Cohomology of multiplicative n-Hom-Lie algebras were provided in [1].

This aim of this paper is to deal with n-Hom-Lie algebra morphisms, construct a cohomology complex and study their deformations. For that, we define a cohomology structure of n-Hom-Lie algebras with values in a module compatible with that of n-Hom-Lie algebra morphisms. The major line of this paper consists on deformations of n-Hom-Lie algebras morphisms. We discuss concepts of infinitesimal deformations, equivalence and obstruction. We denote by \mathcal{N} and \mathcal{N}^{\prime} two n-Hom-Lie algebras. Equivalence classes of infinitesimal deformations of n-Hom-Lie algebras are characterized by the cohomology groups $H^{2}(\mathcal{N}, \mathcal{N})$ and by $H^{1}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$ for that of the morphism $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$. Furthermore, we study $(n+1)$-Hom-Lie algebra morphisms induced by n-Hom-Lie algebra morphisms and compare their corresponding cohomologies.

The paper is organized as follows: In Section 1, we review the basics about n-HomLie algebras and their representation theory. In Section 2, we define the cohomology of n-Hom-Lie algebras with values in an adjoint module. Thus, we define coboundary operator and the n-cochains module $C^{n}(\phi, \phi)$ in the cohomology of n-Hom-Lie algebras morphisms. Section 3 deals with deformations of n-Hom-Lie algebras morphisms. We study infinitesimal deformations and equivalent deformations, as well as obstructions. We show that the obstruction to extend a deformation of order N to a deformation of order $N+1$ is a coboundary. In the last Section, we study $(n+1)$-Hom-Lie algebra morphisms induced by n-Hom-Lie algebra morphisms. We restrict ourselves to 3 -Hom-Lie algebras induced by Hom-Lie algebras and provide examples.

2 Basics

In this section, we summarize the definitions and basic properties of n-Lie algebras and n-Hom-Lie algebras. We recall as well their representation theory.
Definition 2.1. A n-ary Hom-Nambu algebra is a triple ($\mathcal{N},[\cdot, \ldots, \cdot], \widetilde{\alpha})$ consisting of a vector space \mathcal{N}, a n-linear map $[\cdot, \ldots, \cdot]: \mathcal{N}^{n} \rightarrow \mathcal{N}$ and a family $\widetilde{\alpha}=\left(\alpha_{i}\right)_{1 \leq i \leq n-1}$ of linear maps $\alpha_{i}: \mathcal{N} \rightarrow \mathcal{N}$, satisfying

$$
\begin{array}{r}
{\left[\alpha_{1}\left(x_{1}\right), \ldots, \alpha_{n-1}\left(x_{n-1}\right),\left[y_{1}, \ldots, y_{n}\right]\right]=} \\
\sum_{i=1}^{n}\left[\alpha_{1}\left(y_{1}\right), \ldots, \alpha_{i-1}\left(y_{i-1}\right),\left[x_{1}, \ldots, x_{n-1}, y_{i}\right], \alpha_{i}\left(y_{i+1}\right), \ldots, \alpha_{n-1}\left(y_{n}\right)\right] \tag{2.1}
\end{array}
$$

for all $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathcal{N}^{n-1},\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{N}^{n}$. The identity (2.1) is called Hom-Nambu identity, it is also called fundamental identity or Filippov-Jacobi identity.

Let $x=\left(x_{1}, \ldots, x_{n-1}\right) \in \mathcal{N}^{n-1}, \widetilde{\alpha}(x)=\left(\alpha_{1}\left(x_{1}\right), \ldots, \alpha_{n-1}\left(x_{n-1}\right)\right) \in \mathcal{N}^{n-1}$ and let $\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{N}^{n}$. The Hom-Nambu identity (2.1) may be written in terms of adjoint map as

$$
a d(\widetilde{\alpha}(x))\left(\left[y_{1}, \ldots, y_{n}\right]\right)=\sum_{i=1}^{n}\left[\alpha_{1}\left(y_{1}\right), \ldots, \alpha_{i-1}\left(y_{i-1}\right), a d(x)\left(y_{i}\right), \alpha_{i}\left(y_{i+1}\right), \ldots, \alpha_{n-1}\left(y_{n}\right)\right]
$$

Definition 2.2. A n-ary Hom Nambu algebra $(\mathcal{N},[\cdot, \ldots, \cdot], \widetilde{\alpha})$ where $\widetilde{\alpha}=\left(\alpha_{i}\right)_{1 \leq i \leq n-1}$ is called n-Hom-Lie algebra (n-ary Hom-Nambu-Lie algebra) if the bracket is skew-symmetric that is

$$
\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right]=\operatorname{Sgn}(\sigma)\left[x_{1}, \ldots, x_{n}\right] \quad \forall \sigma \in S_{n} \quad \text { and } \quad x_{1}, \ldots, x_{n} \in \mathcal{N}
$$

Remark 2.3. When the maps $\left(\alpha_{i}\right)_{1 \leq i \leq n-1}$ are all identity maps, one recovers the classical n-Lie algebras. The Hom-Nambu identity (2.1), for $n=2$ corresponds to Hom-Jacobi identity, which reduces to Jacobi identity when $\alpha_{1}=i d$.

Definition 2.4. Let $(\mathcal{N},[\cdot, \ldots, \cdot], \widetilde{\alpha})$ and $\left(\mathcal{N}^{\prime},[\cdot, \ldots, \cdot]^{\prime}, \widetilde{\alpha}^{\prime}\right)$ be two n-Hom-Lie algebras where $\widetilde{\alpha}=\left(\alpha_{i}\right)_{i=1, \ldots, n-1}$ and $\widetilde{\alpha}^{\prime}=\left(\alpha_{i}^{\prime}\right)_{i=1, \ldots, n-1}$. A linear map $f: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ is a n-Hom-Lie algebra morphism if it satisfies

$$
\begin{aligned}
f\left(\left[x_{1}, \ldots, x_{n}\right]\right) & =\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]^{\prime} \\
f \circ \alpha_{i} & =\alpha_{i}^{\prime} \circ f \quad \forall i=1, \ldots, n-1
\end{aligned}
$$

Definition 2.5. A multiplicative n-Hom-Lie algebra is a n-Hom-Lie algebra $(\mathcal{N},[\cdot, \ldots, \cdot], \widetilde{\alpha})$, where $\left.\widetilde{\alpha}=\left(\alpha_{i}\right)_{1 \leq i \leq n-1}\right)$ with $\alpha_{1}=\cdots=\alpha_{n-1}=\alpha$, satisfying

$$
\alpha\left(\left[x_{1}, \ldots, x_{n}\right]\right)=\left[\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n}\right)\right], \forall x_{1}, \ldots, x_{n} \in \mathcal{N} .
$$

We denote a multiplicative n-Hom-Lie algebra by $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$, where $\alpha: \mathcal{N} \rightarrow \mathcal{N}$ is a linear map.

Remark 2.6. Let $(\mathcal{N},[\cdot, \ldots, \cdot])$ be a n-Lie algebra and let $\rho: \mathcal{N} \rightarrow \mathcal{N}$ be a n-Lie algebra endomorphism. Then $(\mathcal{N}, \rho \circ[\cdot, \ldots, \cdot], \rho)$ is a multiplicative n-Hom-Lie algebra.

The concept of representation of n-Lie algebras is generalized to n-Hom-Lie algebras in a natural was as follows.

Definition 2.7. Let $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$ be a multiplicative n-Hom-Lie algebra. A representation ρ of \mathcal{N} on a vector space V is a linear map $\rho: \mathcal{N}^{n-1} \rightarrow \operatorname{End}(V)$ such that for $x=$ $\left(x_{1}, \ldots, x_{n-1}\right), y=\left(y_{1}, \ldots, y_{n-1}\right) \in \mathcal{N}^{n-1}$ and $y_{n} \in \mathcal{N}$, we have

$$
\begin{gathered}
\rho(\alpha(x)) \circ \rho(y)=\rho(\alpha(y)) \circ \rho(x)+\rho[x, y]_{\alpha} \circ v \\
\rho\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n-2}\right),\left[y_{1}, \ldots, y_{n}\right]\right) \circ v= \\
\sum_{i=1}^{n}(-1)^{n-i} \rho\left(\alpha\left(y_{1}\right), \ldots, \widehat{\alpha\left(y_{i}\right)}, \ldots, \alpha\left(y_{n}\right)\right) \circ \rho\left(x_{1}, \ldots, x_{n-2}, y_{i}\right),
\end{gathered}
$$

where $v \in \operatorname{End}(V)$ and $[x, y]_{\alpha}=\sum_{i=1}^{n-1}\left(\alpha\left(y_{1}\right), \ldots, a d(x)\left(y_{i}\right), \ldots, \alpha\left(y_{n-1}\right)\right)$. The representation space (V, v) is said to be a \mathcal{N}-module.

Let $(\mathcal{N},[., \ldots,],. \alpha)$ and $\left(\mathcal{N}^{\prime},[., \ldots, .]^{\prime}, \alpha^{\prime}\right)$ be two n-Hom-Lie algebras and $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a n-Hom-Lie algebra morphism. Let $\wedge^{n-1} \mathcal{N}$ be the set of elements $x_{1} \wedge \cdots \wedge x_{n-1}$ that are skew-symmetric in their arguments. On $\wedge^{n-1} \mathcal{N}$, for $x=x_{1} \wedge \cdots \wedge x_{n-1} \in \wedge^{n-1} \mathcal{N}$, $y=y_{1} \wedge \cdots \wedge y_{n-1} \in \wedge^{n-1} \mathcal{N}, z \in \mathcal{N}^{\prime}$, we define

- a linear map $L^{\prime}: \wedge^{n-1} \mathcal{N} \wedge \mathcal{N}^{\prime} \rightarrow \mathcal{N}^{\prime}, L^{\prime}(x) \cdot z=\left[\phi\left(x_{1}\right), \ldots, \ldots, \phi\left(x_{n-1}\right), z\right]^{\prime}$. for $z \in \mathcal{N}^{\prime}$.
- a bilinear map $[,]_{\alpha}: \wedge^{n-1} \mathcal{N} \times \wedge^{n-1} \mathcal{N} \rightarrow \wedge^{n-1} \mathcal{N}$
by $[x, y]_{\alpha}=L(x) \bullet{ }_{\alpha} y=\sum_{i=0}^{n-1}\left(\alpha\left(y_{1}\right), \ldots, L(x) . y_{i}, \ldots, \alpha\left(y_{n-1}\right)\right)$.
- The $\operatorname{map} \bar{\phi}: \wedge^{n-1} \mathcal{N} \rightarrow \wedge^{n-1} \mathcal{N}^{\prime}$ by $\bar{\phi}(x)=\phi\left(x_{1}\right) \wedge \ldots \wedge \phi\left(x_{n-1}\right)$.

We denote by $\mathcal{L}(\mathcal{N})$ the space $\wedge^{n-1} \mathcal{N}$ and we call it the fundamental set.
Lemma 2.8. Let $(\mathcal{N},[., \ldots,],. \alpha)$ and $\left(\mathcal{N}^{\prime},[., \ldots, .]^{\prime}, \alpha^{\prime}\right)$ be two multiplicative n-Hom-Lie algebras and $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a n-Hom-Lie algebra morphism.

For $x, y \in \mathcal{L}(\mathcal{N})$ and $z \in \mathcal{N}^{\prime}$, we have

$$
L^{\prime}\left([x, y]_{\alpha}\right) \cdot \alpha^{\prime}(z)=L^{\prime}(\alpha(x)) \cdot L^{\prime}(y) \cdot z-L^{\prime}(\alpha(y)) \cdot L^{\prime}(x) \cdot z
$$

Proof.

$$
\begin{aligned}
& L^{\prime}\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n-1}\right)\right) \cdot L^{\prime}\left(y_{1}, \ldots, y_{n-1}\right) \cdot \alpha^{\prime}\left(y_{n}\right) \\
= & L\left(\alpha\left(x_{1}\right), \ldots, \alpha\left(x_{n-1}\right)\right) \cdot\left(\left[\phi\left(y_{1}\right), \ldots, \phi\left(y_{n-1}\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime}\right) \\
= & {\left[\phi\left(\alpha\left(x_{1}\right)\right), \ldots, \phi\left(\alpha\left(x_{n-1}\right)\right),\left[\phi\left(y_{1}\right), \ldots, \phi\left(y_{n-1}\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime}\right]^{\prime} } \\
= & \sum_{i=1}^{n-1}\left[\phi\left(\alpha\left(y_{1}\right)\right), \ldots, \phi\left(\alpha\left(y_{i-1}\right)\right),\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n-1}\right), \phi\left(y_{i}\right)\right]^{\prime}, \phi\left(\alpha\left(y_{i+1}\right)\right), \ldots, \phi\left(\alpha\left(y_{n-1}\right)\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime} \\
+ & {\left[\phi\left(\alpha\left(y_{1}\right)\right), \ldots, \phi\left(\alpha\left(y_{n-1}\right)\right),\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n-1}\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime}\right]^{\prime} } \\
= & \sum_{i=1}^{n-1}\left[\phi\left(\alpha\left(y_{1}\right)\right), \ldots, \phi\left(\alpha\left(y_{i-1}\right)\right), \phi \circ a d\left(x_{1}, \ldots, x_{n-1}\right)\left(y_{i}\right), \ldots, \phi\left(\alpha\left(y_{n-1}\right)\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime} \\
+ & {\left[\phi\left(\alpha\left(y_{1}\right)\right), \ldots, \phi\left(\alpha\left(y_{n-1}\right)\right),\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n-1}\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime}\right]^{\prime} } \\
= & \sum_{i=1}^{n-1} L^{\prime}\left(\alpha\left(y_{1}\right), \ldots, a d(x)\left(y_{i}\right), \ldots, \alpha\left(y_{n-1}\right)\right) \cdot \alpha^{\prime}\left(y_{n}\right) \\
+ & {\left[\phi\left(\alpha\left(y_{1}\right)\right), \ldots, \phi\left(\alpha\left(y_{n-1}\right)\right),\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{n-1}\right), \alpha^{\prime}\left(y_{n}\right)\right]^{\prime}\right]^{\prime} }
\end{aligned}
$$

On the other hand,

$$
L^{\prime}\left([x, y]_{\alpha}\right) \cdot \alpha^{\prime}\left(y_{n}\right)=L^{\prime}\left(\sum_{i=1}^{n-1}\left(\alpha\left(y_{1}\right), \ldots, a d(x)\left(y_{i}\right), \ldots, \alpha\left(y_{n-1}\right)\right)\right) \cdot \alpha^{\prime}\left(y_{n}\right)
$$

Thus, the result holds.

Example 2.9. Let $(\mathcal{N},[., \ldots,],. \alpha)$ be a multiplicative n-Hom-Lie algebra. The map ad is a representation, where the operator v is the twist map α.

Corollary 2.10. Let $(\mathcal{N},[., \ldots,],. \alpha)$ and $\left(\mathcal{N}^{\prime},[., \ldots, .]^{\prime}, \alpha^{\prime}\right)$ be two n-Hom-Lie algebras and $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a n-Hom-Lie algebra morphism.
The map L^{\prime} defined above is an adjoint representation of the n-Hom-Lie algebra $(\mathcal{N},[., \ldots,],. \alpha)$ via ϕ, where the operator v is the twist map α^{\prime}. Thus $M=\left(\mathcal{N}^{\prime}, L^{\prime}, \alpha^{\prime}\right)$ is a \mathcal{N}-module.

Moreover, we have the following fundamental result, providing a representation of a n-Hom-Lie algebra by a Hom-Leibniz algebra. Recall that a Hom-Leibniz algebra is a triple $(V,[-,-], \alpha)$, consisting of a vector space, a binary bracket and a linear map satisfying the following identity :

$$
[[X, Y], \alpha(Z)]=[[X, Z], \alpha(Y)]+[\alpha(X),[Y, Z]]
$$

Remark 2.11. The triple $\left(\mathcal{L}(N),[,]_{\alpha}, \alpha\right)$ is a Hom-Leibniz algebra.
Notice that $\wedge^{n-1} \mathcal{N}$ merely reflects that the fundamental object $X=\left(x_{1}, \ldots, x_{n}\right) \in$ $\wedge^{n-1} \mathcal{N}$ is antisymmetric in its arguments; it does not imply that X is a ($n-1$)-multivector obtained by the associative wedge product of vectors.

3 Cohomology of multiplicative n-Hom-Lie algebras with values in an adjoint module

The algebra valued cohomology theory was studied for multiplicative n-Hom-Lie algebras in [1]. The purpose of this section is to construct a cochain complex $C_{\alpha, \alpha^{\prime}}^{*}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$ that defines a Chevalley-Eilenberg cohomology for multiplicative n-Hom-Lie algebras with values in an adjoint module.

Definition 3.1. Let $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$ and $\left(\mathcal{N}^{\prime},[\cdot, \ldots, \cdot]^{\prime}, \alpha^{\prime}\right)$ be two multiplicative n-Hom-Lie algebras and $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a n-Hom-Lie algebra morphism. Regard \mathcal{N}^{\prime} as a representation of \mathcal{N} via ϕ wherever appropriate. An $(m+1)$-cochain is a $(m+1)$-linear map $f: \otimes^{m} \mathcal{L}(\mathcal{N}) \wedge \mathcal{N} \rightarrow$ \mathcal{N}^{\prime} such that

$$
\alpha^{\prime} \circ f\left(x_{1}, x_{2}, \ldots, x_{m}, z\right)=f\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right), \ldots, \alpha\left(x_{m}\right), \alpha(z)\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{m} \in \mathcal{L}(\mathcal{N})$ and $z \in \mathcal{N}$. We denote the set of $(m+1)$-cochain by $C_{\alpha, \alpha^{\prime}}^{m}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$. For $m \geq 1$, the coboundary operator is the linear map $\delta^{m+1}: C_{\alpha, \alpha^{\prime}}^{m}\left(\mathcal{N}, \mathcal{N}^{\prime}\right) \rightarrow$ $C_{\alpha, \alpha^{\prime}}^{m+1}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$ defined by

$$
\begin{array}{r}
\delta^{m+1} f\left(x_{1}, \ldots, x_{m}, x_{m+1}, z\right) \\
\sum_{1 \leq i \leq j}(-1)^{i} f\left(\alpha\left(x_{1}\right), \ldots, \widehat{\alpha\left(x_{i}\right)}, \ldots, \alpha\left(x_{j-1}\right),\left[x_{i}, x_{j}\right], \ldots, \alpha\left(x_{m+1}\right), \alpha(z)\right) \\
+\sum_{i=1}^{m+1}(-1)^{i} f\left(\alpha\left(x_{1}\right), \ldots, \widehat{\alpha\left(x_{i}\right)}, \ldots, \alpha\left(x_{m+1}\right), a d\left(x_{i}\right)(z)\right) \tag{3.1}\\
+\sum_{i=1}^{m+1}(-1)^{i+1} L^{\prime}\left(\alpha^{m}\left(x_{i}\right)\right) \cdot f\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{m+1}, z\right) \\
+\sum_{i=1}^{n-1}(-1)^{m}\left[\phi\left(\alpha^{m}\left(x_{m+1}^{1}\right)\right), \ldots, f\left(x_{1}, \ldots, x_{m}, x_{m+1}^{i}\right), \ldots, \phi\left(\alpha^{m}\left(x_{m+1}^{n-1}\right)\right), \phi\left(\alpha^{m}(z)\right)\right]^{\prime} .
\end{array}
$$

Theorem 1. The pair $\left(\mathcal{C}^{*}\left(\mathcal{N}, \mathcal{N}^{\prime}\right), \delta\right)$ defines a cochain complex. The corresponding cohomology, denoted by $H^{*}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$, is called the cohomology of the n-Hom-Lie algebra \mathcal{N} with coefficients in the representation $\mathcal{N}^{\prime \prime}$.

Proof. The operator is well defined since $\delta^{m+1}(f) \circ\left(\bar{\alpha}^{\otimes(m+1)} \wedge \alpha\right)=\alpha^{\prime} \circ \delta^{m+1}(f)$. A Straightforward computation based on the property of multiplicative algebra and the compatibility condition of the morphism ϕ with the morphisms α and α^{\prime} that is $\phi \circ \alpha=$ $\alpha^{\prime} \circ \phi$ and requires some simplification using mainly Leibniz structure on $\mathcal{L}(\mathcal{N})$, leads to $\delta^{m+2} \circ \delta^{m+1}=0$.

Remark 3.2. In the particular case where $\mathcal{N}^{\prime}=\mathcal{N}$ and $L^{\prime}=a d$, the n-Hom-Lie algebra is a \mathcal{N}-module over itself. We recover the coboundary operator defined in [1]. One considers the previous definition with $L^{\prime}=$ ad and the last sum without ϕ and denote $C_{\alpha, \alpha^{\prime}}^{n}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$ by $C_{\alpha}^{n}(\mathcal{N}, \mathcal{N})$.

3.1 Cohomology of multiplicative n-Hom-Lie algebra morphisms

The original cohomology theory associated to deformation of Lie algebra morphisms was developed by Frégier in [9]. The aim of this part is to define explicitly a cochain complex with a coboundary operator and the n-cochains module $\mathcal{C}^{m}(\phi, \phi)$ providing a cohomology of n-Hom-Lie algebra morphisms.

Let $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a multiplicative n-Hom-Lie algebra morphism. Regard \mathcal{N}^{\prime} as a representation of \mathcal{N} via ϕ wherever appropriate. We define the module of $(m+1)$-cochains of the morphism ϕ to be

$$
\mathcal{C}^{m}(\phi, \phi)=\mathcal{C}_{\alpha}^{m}(\mathcal{N}, \mathcal{N}) \otimes \mathcal{C}_{\alpha^{\prime}}^{m}\left(\mathcal{N}^{\prime}, \mathcal{N}^{\prime}\right) \otimes \mathcal{C}_{\alpha, \alpha^{\prime}}^{m-1}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)
$$

where $\mathcal{C}_{\alpha}^{m}(\mathcal{N}, \mathcal{N})$ is defined in Remark 3.2 and $\mathcal{C}_{\alpha, \alpha^{\prime}}^{m-1}\left(\mathcal{N}, \mathcal{N}^{\prime}\right)$ is given in Definition 3.1. The coboundary operator $\delta^{m+1}: \mathcal{C}^{m}(\phi, \phi) \rightarrow \mathcal{C}^{m+1}(\phi, \phi)$ is defined by

$$
\delta^{m+1}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\delta^{m+1} \varphi_{1}, \delta^{m+1} \varphi_{2}, \delta^{m} \varphi_{3}+(-1)^{m}\left(\phi \circ \varphi_{1}-\varphi_{2} \circ\left(\bar{\phi}^{\otimes m} \wedge \phi\right)\right)\right)
$$

where $\delta^{m+1} \varphi_{1}$ and $\delta^{m+1} \varphi_{2}$ are defined in [1] and $\delta^{m} \varphi_{3}$ by (3.1).
Proposition 3.3. We have $\delta^{m+2} \circ \delta^{m+1}=0$. Hence $\left(C^{*}(\phi, \phi), \delta\right)$ is a cochain complex. The corresponding cohomology is denoted by $H^{*}(\phi, \phi)$.

4 Deformations of n-Hom-Lie algebra morphisms

In this section, we aim to study one parameter formal deformations of n-Hom-Lie algebra morphisms. Deformations of n-Hom-Lie algebras have been discussed in terms of ChevalleyEilenberg cohomology, see [1]. Recall that the main idea is to change the scalar field \mathbb{K} to a formal power series ring $\mathbb{K} \llbracket t \rrbracket$, in one variable t. The main results provide cohomological interpretations.

Let $\mathcal{N} \llbracket t \rrbracket$ be the set of formal power series whose coefficients are elements of the vector space $\mathcal{N},(\mathcal{N} \llbracket t \rrbracket$ is obtained by extending the coefficients domain of \mathcal{N} from \mathbb{K} to $\mathbb{K} \llbracket t \rrbracket)$. Given a \mathbb{K} - n-linear map $\varphi: \mathcal{N} \times \ldots \times \mathcal{N} \rightarrow \mathcal{N}$, it admits naturally an extension to a $\mathbb{K} \llbracket t \rrbracket-n$-linear map $\varphi: \mathcal{N} \llbracket t \rrbracket \times \ldots \times \mathcal{N} \llbracket t \rrbracket \rightarrow \mathcal{N} \llbracket t \rrbracket$, that is, if $x_{i}=\sum_{j \geq 0} a_{i}^{j} t^{j}, 1 \leq i \leq n$ then $\varphi\left(x_{1}, \ldots, x_{n}\right)=\sum_{j_{1}, \ldots, j_{n} \geq 0} t^{j_{1}+\ldots j_{n}} \varphi\left(a_{1}^{j_{1}}, \ldots, a_{n}^{j_{n}}\right)$.

Definition 4.1. A deformation of a multiplicative n-Hom-Lie algebra ($\mathcal{N},[., \ldots,],. \alpha)$ is given by a $\mathbb{K} \llbracket t \rrbracket$-n-linear map $[\cdot, \ldots, \cdot]_{t}: \mathcal{N} \llbracket t \rrbracket \times \cdots \times \mathcal{N} \llbracket t \rrbracket \rightarrow \mathcal{N} \llbracket t \rrbracket$ of the form $[\cdot, \ldots, \cdot]_{t}=$ $\sum_{i \geq 0} t^{i}[\cdot, \ldots, \cdot]_{i}$, where each $[\cdot, \ldots, \cdot]_{i}$ is a \mathbb{K}-n-linear $[\cdot, \ldots, \cdot]_{i}: \mathcal{N} \times \ldots \times \mathcal{N} \rightarrow \mathcal{N}$ and
$[\cdot, \ldots, \cdot]_{0}=[\cdot, \ldots, \cdot]$ such that

$$
\begin{array}{r}
{\left[\alpha\left(x_{1}, \ldots, \alpha\left(x_{n-1}\right),\left[y_{1}, \ldots, y_{n}\right]_{t}\right]_{t}\right.} \\
=\sum_{i=1}^{n-1}\left[\alpha\left(y_{1}\right), \ldots, \alpha\left(y_{i-1}\right),\left[x_{1}, \ldots, x_{n-1}, y_{i}\right]_{t}, \alpha\left(y_{i+1}\right), \ldots, \alpha\left(y_{n}\right)\right]_{t} \tag{4.1}
\end{array}
$$

Let $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ be a n-Hom-Lie algebra morphism. Define a deformation of ϕ to be a triple $\Theta_{t}=\left([., \ldots, .]_{\mathcal{N}, t},[., \ldots, .]_{\mathcal{N}^{\prime}, t}, \phi_{t}\right)$ in which

- $[\cdot, \ldots, \cdot]_{\mathcal{N}, t}=\sum_{i=0}^{\infty}[\cdot, \ldots, \cdot]_{\mathcal{N}, i} t^{i}$ is a deformation of \mathcal{N},
- $[\cdot, \ldots, \cdot]_{\mathcal{N}^{\prime}, t}=\sum_{i=0}^{\infty}[\cdot, \ldots, \cdot]_{\mathcal{N}^{\prime}, i} t^{i}$ is a deformation of \mathcal{N}^{\prime},
- $\phi_{t}: \mathcal{N} \llbracket t \rrbracket \rightarrow \mathcal{N}^{\prime} \llbracket t \rrbracket$ is a deformation of the n-Hom-Lie algebra morphism of the form $\phi_{t}=\sum_{i=0}^{\infty} \phi_{i} t^{i}$ where each $\phi_{i}: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$ is a \mathbb{K}-linear map and $\phi_{0}=\phi$, such that ϕ_{t} satisfies the following equations

$$
\begin{equation*}
\phi_{t}\left(\left[x_{1}, \ldots, x_{n}\right]_{\mathcal{N}, t}\right)=\left[\phi_{t}\left(x_{1}\right), \ldots, \phi_{t}\left(x_{n}\right)\right]_{\mathcal{N}^{\prime}, t} \quad \text { and } \quad \phi_{t} \circ \alpha=\alpha^{\prime} \circ \phi_{t} \tag{4.2}
\end{equation*}
$$

The deformation is said of order N if the sums run from 0 to N.
Remark 4.2. Equation (4.1) can be expressed as

$$
L_{t}\left([x, y]_{\alpha}\right) \cdot \alpha\left(y_{n}\right)=L_{t}(\alpha(x)) \cdot\left(L_{t}(y) \cdot y_{n}\right)-L_{t}(\alpha(y)) \cdot\left(L_{t}(x) \cdot y_{n}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n-1}\right), y=\left(y_{1}, \ldots, y_{n-1}\right)$ and $L_{t}(x) \cdot y_{n}=\left[x_{1}, \ldots, x_{n-1}, y_{n}\right]_{t}$.
Proposition 4.3. The linear coefficient, $\theta_{1}=\left([., .]_{\mathcal{N}, 1},[., .]_{\mathcal{N}^{\prime}, 1}, \phi_{1}\right)$, which is called the infinitesimal of the deformation Θ_{t} of ϕ, is a 2-cocycle in $C^{2}(\phi, \phi)$.

Definition 4.4. (1) Let $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$ be a n-Hom-Lie algebra. Let $\mathcal{N}_{t}=\left(\mathcal{N} \llbracket t \rrbracket,[., \ldots, .]_{t}, \alpha\right)$ and $\mathcal{N}_{t}^{\prime}=\left(\mathcal{N} \llbracket t \rrbracket,[\cdot, \ldots, \cdot]_{t}^{\prime}, \alpha\right)$ be two deformations of \mathcal{N}. We say that \mathcal{N}_{t} and \mathcal{N}_{t}^{\prime} are equivalent if there exists a formal automorphism $\psi_{t}: \mathcal{N} \llbracket t \rrbracket \rightarrow \mathcal{N} \llbracket t \rrbracket$ that may be written in the form $\psi_{t}=\sum_{i \geq 0} \psi_{i} t^{i}$, where $\psi_{i} \in \operatorname{End}(\mathcal{N})$ and $\psi_{0}=I d$ and such that

$$
\psi_{t}\left(\left[x_{1}, \ldots, x_{n}\right]_{t}\right)=\left[\psi_{t}\left(x_{1}\right), \ldots, \psi_{t}\left(x_{n}\right)\right]_{t}^{\prime} \quad \text { and } \quad \psi_{t} \circ \alpha=\alpha \circ \psi_{t}
$$

(2) Let $\Theta_{t}=\left([\cdot, \ldots, \cdot]_{\mathcal{N}, t},[\cdot, \ldots, \cdot]_{\mathcal{L}, t}, \phi_{t}\right)$ and $\widetilde{\Theta}_{t}=\left([\cdot, \ldots, \cdot]_{\mathcal{N}, t}^{\prime},[\cdot, \ldots, \cdot]_{\mathcal{L}, t}^{\prime}, \widetilde{\phi}_{t}\right)$ be two deformations of a n-Hom-Lie algebra morphism $\phi: \mathcal{N} \rightarrow \mathcal{L}$. A formal automorphism $\phi_{t}: \Theta_{t} \rightarrow \widetilde{\Theta}_{t}$ is a pair $\left(\psi_{\mathcal{N}, t}, \psi_{\mathcal{L}, t}\right)$, where $\psi_{\mathcal{N}, t}: \mathcal{N} \llbracket t \rrbracket \rightarrow \mathcal{N} \llbracket t \rrbracket$ and $\psi_{\mathcal{L}, t}: \mathcal{L} \llbracket t \rrbracket \rightarrow \mathcal{L} \llbracket t \rrbracket$ are formal automorphisms, such that $\widetilde{\phi}_{t}=\psi_{\mathcal{L}, t} \phi_{t} \psi_{\mathcal{N}, t}^{-1}$. Two deformations Θ_{t} and $\widetilde{\Theta}_{t}$ are equivalent if and only if there exists a formal automorphism $\Theta_{t} \rightarrow \widetilde{\Theta}_{t}$.

Theorem 2. The infinitesimal of a deformation Θ_{t} of ϕ is a 2-cocycle in $C^{2}(\phi, \phi)$ whose cohomology class is determined by the equivalence class of the first term of Θ_{t}.

Theorem 3. Let $\left(\mathcal{N},[., \ldots, .]_{\mathcal{N}}\right)$ and $\left(\mathcal{N}^{\prime},[., \ldots, .]_{\mathcal{N}^{\prime}}\right)$ be two n-Hom-Lie algebras. Let $\Theta_{t}=\left([., \ldots, .]_{\mathcal{N}, t},[., \ldots, .]_{\mathcal{N}^{\prime}, t}, \phi_{t}\right)$ be a deformation of a n-Hom-Lie algebra morphism $\phi: \mathcal{N} \rightarrow \mathcal{N}^{\prime}$. Then, there exists an equivalent deformation $\widetilde{\Theta}_{t}=\left([., \ldots,]_{\mathcal{N}, t}^{\prime},[., \ldots,]_{\mathcal{N}^{\prime}, t}^{\prime}, \widetilde{\phi}_{t}\right)$ such that $\widetilde{\theta}_{1} \in Z^{2}(\phi, \phi)$ and $\widetilde{\theta}_{1} \notin B^{2}(\phi, \phi)$. Hence, if $H^{2}(\phi, \phi)=0$ then every formal deformation is equivalent to a trivial deformation.

Let $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$ and $\left(\mathcal{N}^{\prime},[\cdot, \ldots, \cdot]^{\prime}, \alpha^{\prime}\right)$ be two n-Hom-Lie algebras and let ϕ be a n-Hom-Lie algebra morphism. A deformation of order N of ϕ is a triple

$$
\Theta_{t}=\left([\cdot, \ldots, \cdot]_{t} ;[\cdot, \ldots, \cdot]_{t}^{\prime} ; \phi_{t}\right),
$$

where $[\cdot, \ldots, \cdot]_{t}=\sum_{i=0}^{N}[\cdot, \ldots, \cdot]_{i} t^{i},[\cdot, \ldots, \cdot]_{t}^{\prime}=\sum_{i=0}^{N}[\cdot, \ldots, \cdot]_{i}^{\prime} t^{i}$ and $\psi_{t}=\sum_{i=0}^{N} \psi_{i} t^{i}$, satisfying $\phi_{t}\left(\left[x_{1}, \ldots, x_{n}\right]_{t}\right)=\left[\phi_{t}\left(x_{1}\right), \ldots, \phi_{t}\left(x_{n}\right)\right]_{t}^{\prime}$. Given a deformation Θ_{t} of order N, it extends to a deformation of order $N+1$ if and only if there exists a 2 -cochain θ_{N+1} such that $\bar{\Theta}_{t}=\Theta_{t}+t^{N+1} \theta_{N+1}$ is a deformation of order $N+1$. The deformation $\bar{\Theta}_{t}$ is called an order $N+1$ extension of Θ_{t}.
Set $\mathcal{O} b_{\mathcal{N}}$ (resp. $\mathcal{O} b_{\mathcal{N}^{\prime}}$) be the obstruction of a deformation of a n-Hom-Lie algebra \mathcal{N} (resp. \mathcal{N}^{\prime}):

$$
\begin{aligned}
\mathcal{O} b_{\mathcal{N}} & =-\sum_{\substack{k+l=N+1 \\
k, l>0}}\left[\alpha\left(x_{1}^{1}\right), \ldots, \alpha\left(x_{1}^{n-1}\right),\left[x_{2}^{1}, \ldots, x_{2}^{n-1}, z\right]_{k}\right]_{l} \\
& +\sum_{\substack{k+l=N+1 \\
k, l>0}} \sum_{i=1}^{n-1}\left[\alpha\left(x_{2}^{1}\right), \ldots, \alpha\left(x_{2}^{i-1}\right),\left[x_{1}^{1}, \ldots, x_{1}^{n-1}, x_{2}^{i}\right]_{k}, \alpha\left(x_{2}^{i+1}\right), \ldots, \alpha\left(x_{2}^{n-1}\right), \alpha(z)\right]_{l} \\
& +\sum_{\substack{k+l=N+1 \\
k, l>0}}\left[\alpha\left(x_{2}^{1}\right), \ldots, \alpha\left(x_{2}^{n-1}\right),\left[x_{1}^{1}, \ldots, x_{1}^{n-1}, z\right]_{k}\right]_{l} .
\end{aligned}
$$

Let $\mathcal{O} b_{\phi}$ be the obstruction of the extension of the n-Hom-Lie algebra morphism ϕ :

$$
\mathcal{O} b_{\phi}=\sum_{\substack{i+j=N+1 \\ i, j>0}} \phi_{i} \circ\left[x_{1}, \ldots, x_{n}\right]_{j}-\sum^{\prime}\left[\phi_{l_{1}}\left(x_{1}\right), \cdots, \phi_{l_{i}}\left(x_{i}\right), \cdots, \phi_{i_{n}}\left(x_{n}\right)\right]_{j}^{\prime}
$$

with

$$
\sum^{\prime}=\sum_{j=1}^{N} \sum_{\substack{l_{i}>0 \\ 1 \leq i \leq n}}+\sum_{\substack{\widehat{c}^{\prime}=1}} \sum_{\substack{l_{1}+\cdots+\widehat{l}_{1}+\cdots+l_{n}>0 \\ l_{i}>0 \\ 1 \leq i \leq n}}^{n} \sum_{i=1}
$$

Theorem 4.5. Let $(\mathcal{N},[., \ldots,]$.$) and \left(\mathcal{N}^{\prime},[., \ldots, .]^{\prime}\right)$ be two n-Hom-Lie algebras and ϕ be a n-Hom-Lie algebra morphism. Let $\Theta_{t}=\left([., \ldots, .]_{t},[., \ldots, .]_{t}^{\prime}, \phi_{t}\right)$ be an order N oneparameter formal deformation of ϕ. Then $\mathcal{O} b=\left(\mathcal{O} b_{\mathcal{N}}, \mathcal{O} b_{\mathcal{N}^{\prime}}, \mathcal{O} b_{\phi}\right) \in Z^{3}(\phi, \phi)$. Therefore the deformation extends to a deformation of order $N+1$ if and only if $\mathcal{O b}$ is a coboundary.

5 Morphisms of ternary Hom-Lie algebras induced by morphisms of Hom-Lie algebras

In [4] and [5], the authors introduced a construction of a 3-Hom-Lie algebra (ternary Hom-Lie algebras) from a Hom-Lie algebra along a linear form, and more generally a $(n+1)$-Hom-Lie algebra from a n-Hom-Lie algebra, called $(n+1)$-Hom-Lie algebra induced by n-Hom-Lie algebra. In this section we will investigate morphisms of 3-Hom-Lie algebras induced by morphisms of Hom-Lie algebras.

Definition 5.1. Let $\varphi_{\tau}: \mathcal{N}^{n} \rightarrow \mathcal{N}$ be a n-linear map and $\tau: \mathcal{N} \rightarrow \mathbb{K}$ be a linear form. Define $\varphi_{\tau}: \mathcal{N}^{n+1} \rightarrow \mathcal{N}$ by

$$
\varphi_{\tau}\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{n+1}(-1)^{k-1} \tau\left(x_{k}\right) \varphi\left(x_{1}, \ldots, \hat{x}_{k}, \ldots, x_{n+1}\right)
$$

where the hat over \hat{x}_{k} on the right hand side means that x_{k} is excluded, that is φ is calculated on ($x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1}$).

Definition 5.2. For $\varphi: \mathcal{N}^{n} \rightarrow \mathcal{N}$, we call a linear map $\tau: \mathcal{N} \rightarrow \mathbb{K}$ a φ-trace or trace map if $\tau\left(\varphi\left(x_{1}, \ldots, x_{n}\right)\right)=0$ for all $x_{1}, \ldots, x_{n} \in \mathcal{N}$.

Theorem 5.3. [4, 5, 13] Let $\left(\mathcal{N}, \varphi, \alpha_{1}, \ldots, \alpha_{n}\right)$ be a n-Hom-Lie algebra and τ a φ-trace. If $\tau \circ \alpha_{i}=\tau$ for $i=1, \ldots, n$ then $\left(\mathcal{N}, \varphi_{\tau}, \alpha_{1}, \ldots, \alpha_{n+1}\right)$ is a $(n+1)$-Hom-Lie algebra. Moreover, if (A, φ, α) is a multiplicative n-Hom-Lie algebra, then, under the same condition, $\left(A, \varphi_{\tau}, \alpha\right)$ is a multiplicative $(n+1)$-Hom-Lie algebra.

Let $\left(\mathcal{N}_{1},[.,]_{1}, \alpha_{1}\right)$ and $\left(\mathcal{N}_{2},[., .]_{2}, \alpha_{2}\right)$ be two Hom-Lie algebras. let τ_{1} be a $[., .]_{1}$-trace and τ_{2} be a $[\text {., },]_{2}$-trace. Let $\left(\mathcal{N}_{\tau, 1},[.,,,]_{\tau_{1}}, \alpha_{1}\right)$ and $\left(\mathcal{N}_{\tau, 2},[, ., .,]_{\tau_{2}}, \alpha_{2}\right)$ be two 3 -Hom-Lie algebras induced respectively by $\left(\mathcal{N}_{1},[., .]_{1}, \alpha_{2}\right)$ and $\left(\mathcal{N}_{2},[.,]_{2}, \alpha_{2}\right)$. Let $\phi: \mathcal{N}_{1} \rightarrow \mathcal{N}_{2}$ be a Hom-Lie algebra morphism between $\left(\mathcal{N}_{1},[., .,]_{1}, \alpha_{1}\right)$ and $\left(\mathcal{N}_{2},[., .,]_{1}, \alpha_{2}\right)$, i.e. $\phi\left([x, y]_{1}\right)=$ $[\phi(x), \phi(y)]_{2}$. We want to extend this morphism to induced ternary Hom-Lie algebras. We should have

$$
\phi\left([x, y, z]_{\tau_{1}}\right)=[\phi(x), \phi(y), \phi(z)]_{\tau_{2}}
$$

according to the definition of the ternary bracket

$$
\phi\left([x, y, z]_{\tau_{1}}\right)=\circlearrowleft_{x, y, z} \tau_{1}(x) \phi\left([y, z]_{1}\right)=\circlearrowleft_{x, y, z} \tau_{1}(x)[\phi(y), \phi(z)]_{2}
$$

In the other hand,

$$
[\phi(x), \phi(y), \phi(z)]_{\tau_{2}}=\circlearrowleft_{\phi(x), \phi(y), \phi(z)} \tau_{2}(\phi(x))[\phi(y), \phi(z)]_{2}
$$

A theorem for constructing 3-Hom-Lie algebra morphism induced by Hom-Lie algebra can be formulated as follows:

Theorem 5.4. The map ϕ is a morphism of 3-Hom-Lie algebras induced by binary Hom-Lie algebras morphism if $\tau_{2}(\phi)=\tau_{1}$.

Remark 5.5. A necessary and sufficient condition for the construction of 3-Hom-Lie algebra morphism induced by Hom-Lie algebra morphism can be written as
$\left(\tau_{1}(x)-\tau_{2}(\phi(x))[\phi(y), \phi(z)]+\left(\tau_{1}(y)-\tau_{2}(\phi(y))[\phi(z), \phi(x)]+\left(\tau_{1}(z)-\tau_{2}(\phi(z))[\phi(x),(y)]=0\right.\right.\right.$,
for all $x, y, z \in \mathcal{N}_{1}$.
The previous results can easily and similarly stated for general situation of $(n+1)$-Hom-Lie algebras induced by n-Hom-Lie algebras.

5.1 Cohomology

In this section, we study the connections between the cohomology of a given n-Hom-Lie algebra morphism and the cohomology of the induced $(n+1)$-Hom-Lie algebra morphism.

Proposition 5.6. [13] Let $(\mathcal{N},[\cdot, \ldots, \cdot], \alpha)$ be a multiplicative n-Hom-Lie algebra, τ be a trace map and $\left(\mathcal{N},[\cdot, \ldots, \cdot]_{\tau_{1}}, \alpha_{1}\right)$ be the induced multiplicative $(n+1)$-Hom-Lie algebra. Let $\varphi \in Z^{2}(\mathcal{N}, \mathcal{N})$ such that:

1. $\sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n}(-1)^{k+n-1} \tau\left(y_{i}\right) \tau\left(y_{k}\right) \varphi\left(y_{1}, \cdots, \hat{y}_{k}, \ldots, y_{i-1}, X_{n} \cdot x_{n}, y_{i+1}, \ldots, y_{n}, z\right)$,
2. $\sum_{i=1}^{n} \sum_{k=1, k \neq i}^{n}(-1)^{k+n-1} \tau\left(y_{i}\right) \tau\left(y_{k}\right)\left[y_{1}, \cdots, \hat{y}_{k}, \ldots, y_{i-1}, \varphi\left(X_{n}, x_{n}\right), y_{i+1}, \ldots, y_{n}, z\right]$,
3. $\tau \circ \varphi=0$.

Then $\varphi_{\tau}(X, z)=\sum_{i=1}^{n}(-1)^{i-1} \tau\left(x_{i}\right) \varphi\left(X_{i}, z\right)+(-1)^{n} \tau(z) \varphi\left(X_{n}, x_{n}\right)$ is a 2-cocyle of the induced ($n+1$)-Hom Lie algebra for $X=x_{1} \wedge \ldots \wedge x_{n} \in \wedge^{n} \mathcal{N}, X_{i}=x_{1} \wedge \ldots \wedge x_{i-1} \wedge x_{i+1} \wedge \ldots \wedge x_{n} \in$ $\wedge^{n-1} \mathcal{N}$.

Theorem 5.7. Let $\left(\mathcal{N}_{1},[\cdot, \ldots, \cdot], \alpha_{1}\right)\left(\right.$ resp. $\left.\left.\mathcal{N}_{2},[\cdot, \ldots, \cdot], \alpha_{2}\right)\right)$ be a multiplicative n-Hom Lie algebra, τ_{1} (resp. τ_{2}) be a trace map and $\left(\mathcal{N}_{\tau_{1}},[\cdot, \ldots, \cdot]_{\tau_{1}}, \alpha_{1}\right)\left(\operatorname{resp} .\left(\mathcal{N}_{\tau_{2}},[\cdot, \ldots, \cdot]_{\tau_{2}}, \alpha_{2}\right)\right)$ be the induced multiplicative $(n+1)$-Hom-Lie algebra. Let ϕ be a morphism of $(n+1)$-Hom-Lie algebra induced by a morphism of n-Hom-Lie algebra.
Let $\varphi_{\tau_{1}}(X, z)$ be a 2-cocyle of the induced $(n+1)$-Hom Lie algebra $\left(\mathcal{N}_{\tau, 1},[., \ldots, .]_{\tau_{1}}, \alpha_{1}\right)$ (resp. $\varphi_{\tau_{2}}(X, z)$ a 2-cocyle of the induced $(n+1)$-Hom Lie algebra $\left(\mathcal{N}_{\tau_{2}},[., \ldots, .]_{\tau_{2}}, \alpha_{2}\right)$ defined in the pervious proposition. Let $\rho \in Z^{1}\left(\mathcal{N}_{1}, \mathcal{N}_{2}\right)$. Then $\rho_{\tau}\left(x_{j}\right)=\sum_{i=1 i \neq j}^{n}(-1)^{i-1} \tau_{1}\left(x_{i}\right) \rho\left(x_{i}\right)+$ $(-1)^{n} \tau_{1}(z) \rho\left(x_{n}\right)$ is a 1-cocyle of the induced $(n+1)$-Hom-Lie algebra morphism. Hence $\left(\varphi_{\tau_{1}}, \varphi_{\tau_{2}}, \rho_{\tau}\right)$ is a 2-cocycle in $Z^{2}(\phi, \phi)$.

Proof. Let $\varphi_{\tau_{1}}(X, z) \in Z^{2}\left(\mathcal{N}_{\tau_{1}}, \mathcal{N}_{\tau_{1}}\right)$ and $\varphi_{\tau_{2}}(X, z) \in Z^{2}\left(\mathcal{N}_{\tau_{2}}, \mathcal{N}_{\tau_{2}}\right)$ satisfying the condition above, then

$$
\begin{aligned}
& \delta^{2} \rho_{\tau}(X, z)=\phi \circ \varphi_{1, \tau}(X, z)-\varphi_{2, \tau}(\phi, \phi)(X, z)-\delta^{1} \rho_{\tau}(X, z) \\
& =\sum_{i=1}^{n}(-1)^{i-1} \tau_{1}\left(x_{i}\right) \phi \circ \varphi_{1}\left(X_{i}, z\right)+(-1)^{n} \tau_{1}(z) \phi \circ \varphi_{1}\left(X_{n}, x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\sum_{i=1}^{n}(-1)^{i-1} \tau_{2}\left(\phi\left(x_{i}\right)\right) \varphi_{2}\left(\phi\left(X_{i}\right), \phi(z)\right)-(-1)^{n} \tau_{2}(z) \varphi_{2}\left(\phi\left(X_{n}\right), \phi\left(x_{n}\right)\right) \\
& -\sum_{j=1}^{n} \sum_{i=1}^{n}(-1)^{i-1} \tau_{1}\left(x_{i}\right)\left[\phi\left(x_{1}\right), \ldots, \rho\left(x_{i}\right), \ldots, \phi\left(x_{n}\right), \phi(z)\right] \\
& -(-1)^{n} \tau(z)\left[\phi\left(x_{1}\right), \ldots, \rho\left(x_{i}\right), \ldots, \phi\left(x_{n-1}\right), \phi\left(x_{n}\right)\right] \\
& +\sum_{i=1}^{n}(-1)^{i-1} \tau_{1}\left(x_{i}\right) \rho\left(\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, x_{n}, z\right]\right)+(-1)^{n} \tau_{1}(z) \rho\left(\left[x_{1}, \ldots, x_{n-1}, x_{n}\right]\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} \tau_{1}\left(x_{i}\right) \delta^{2} \rho\left(X_{i}, z\right)+(-1)^{n} \tau_{1}(z) \delta^{2} \rho\left(X_{n}, x_{n}\right)=0+0=0
\end{aligned}
$$

5.2 Deformations

Let $\left(\mathcal{N}_{1},[\cdot, \ldots, \cdot], \alpha_{1}\right)\left(\right.$ resp. $\left.\left.\mathcal{N}_{2},[\cdot, \ldots, \cdot], \alpha_{2}\right)\right)$ be a multiplicative n-Hom Lie algebra, τ_{1} (resp. τ_{2}) be a trace and $\left(\mathcal{N}_{\tau_{1}},[\cdot, \ldots, \cdot]_{\tau_{1}}, \alpha_{1}\right)$ (resp. $\left(\mathcal{N}_{\tau_{2}},[\cdot, \ldots, \cdot]_{\tau_{2}}, \alpha_{2}\right)$) be the induced multiplicative $(n+1)$-Hom-Lie algebra. Let ϕ be the morphism of $(n+1)$-Hom-Lie algebra induced by a morphism of a n-Hom-Lie algebra.

Now, let $[\cdot, \cdot]_{1, t}=\sum_{i=0}^{\infty}[\cdot, \cdot]_{1, i} t^{i}$ be a one-parameter formal deformation of \mathcal{N}_{1} and $[\cdot, \cdot]_{2, t}=$ $\sum_{i=0}^{\infty}[\cdot, \cdot]_{2, i} t^{i}$ be a one-parameter formal deformation of \mathcal{N}_{2}. Let $\phi_{t}: \mathcal{N}_{1} \llbracket t \rrbracket \rightarrow \mathcal{N}_{2} \llbracket t \rrbracket$ be a deformation of the Hom-Lie algebra morphism $\phi: \mathcal{N}_{1} \rightarrow \mathcal{N}_{2}$ of the form $\phi_{t}=\sum_{n=0}^{\infty} \phi_{n} t^{n}$ such that ϕ_{t} satisfies the following equation

$$
\phi_{t}\left(\left[x_{1}, x_{2}\right]_{1, t}\right)=\left[\phi_{t}\left(x_{1}\right), \phi_{t}\left(x_{2}\right)\right]_{2, t} \quad \text { and } \quad \phi_{t} \circ \alpha_{1}=\alpha_{2} \circ \phi_{t}
$$

Assume that τ_{1} satisfies $\tau_{1}\left([x, y]_{1, t}\right)=0$, then $[., ., .]_{\tau_{1}, t}$ is a one parameter formal deformation of the induced 3 -Hom Lie algebra $\left(\mathcal{N}_{1},[., ., .]_{\tau_{1}, t}, \alpha_{1}\right)$ if

$$
[x, y, z]_{\tau_{1}, t}=\circlearrowleft_{x, y, z} \tau_{1}(x)[y, z]_{1, t}=\sum_{i=0}^{k} t^{i} \circlearrowleft_{x, y, z} \tau_{1}(x)[y, z]_{1, i}
$$

Also, assume that τ_{2} satisfies $\tau_{1}\left([x, y]_{2, t}\right)=0$. Then $[., ., .]_{\tau_{2}}$ is a one parameter formal deformation of the induced 3 -Hom-Lie algebra $\left(\mathcal{N}_{2},[., ., .]_{\tau_{1}}, \alpha_{2}\right)$ if

$$
[x, y, z]_{\tau_{2}, t}=\circlearrowleft_{x, y, z} \tau_{2}(x)[y, z]_{2, t}=\sum_{i=0}^{k} t^{i} \circlearrowleft_{x, y, z} \tau_{1}(x)[y, z]_{2, i}
$$

Futhermore, ϕ_{t} is a deformation of the induced morphism ϕ, if

$$
\phi_{t}\left([x, y, z]_{\tau_{1}, t}\right)=\circlearrowleft_{x, y, z} \tau_{1}(x) \phi_{t}\left([y, z]_{1, t}\right)=\circlearrowleft_{x, y, z} \tau_{1}(x)[\phi(y), \phi(z)]_{2, t}
$$

In the other hand

$$
\left[\phi_{t}(x), \phi_{t}(y), \phi_{t}(z)\right]_{\tau_{2}, t}=\circlearrowleft_{\phi_{t}(x), \phi_{t}(y), \phi_{t}(z)} \tau_{2}\left(\phi_{t}(x)\right)\left[\phi_{t}(y), \phi_{t}(z)\right]_{\tau_{2}, t} .
$$

Then ϕ_{t} is a deformation of the induced $(n+1)$-Hom-Lie algebra morphism if $\tau_{1}(x)=$ $\tau_{2}\left(\phi_{t}(x)\right)$.
Example 1. Consider the table below, which gives an example of construction of two induced multiplicative 3-Hom-Lie algebras (given in [13]).

Hom-Lie algebra	Trace	induced 3-Hom-Lie algebra
$\begin{aligned} & {\left[e_{1}, e_{2}\right]_{1}=e_{4}} \\ & {\left[e_{3}, e_{4}\right]_{1}=e_{2}} \\ & \alpha_{1}\left(e_{1}\right)=e_{3}+e_{4} ; \alpha_{1}\left(e_{2}\right)=e_{4} \\ & \alpha_{1}\left(e_{3}\right)=e_{1}+e_{2} ; \alpha_{1}\left(e_{4}\right)=e_{2} \end{aligned}$	$\tau_{1}(x)=x_{1}+x_{3}$	$\begin{aligned} & {\left[e_{1}, e_{2}, e_{3}\right]_{1, \tau}=e_{4}} \\ & {\left[e_{1}, e_{3}, e_{4}\right]_{1, \tau}=e_{2}} \\ & \alpha_{1}\left(e_{1}\right)=e_{3}+e_{4} ; \alpha_{1}\left(e_{2}\right)=e_{4} \\ & \alpha_{1}\left(e_{3}\right)=e_{1}+e_{2} ; \alpha_{1}\left(e_{4}\right)=e_{2} \end{aligned}$
$\begin{aligned} & {\left[f_{1}, f_{2}\right]_{2}=f_{4} ;} \\ & \alpha_{2}\left(f_{1}\right)=f_{1}+f_{2}+f_{3}+f_{4} \\ & \alpha_{2}\left(f_{2}\right)=f_{4} \\ & \alpha_{2}\left(f_{3}\right)=0 ; \alpha_{2}\left(f_{4}\right)=0 \end{aligned}$	$\tau_{2}(x)=x_{1}$	$\begin{aligned} & {\left[f_{1}, f_{2}, f_{3}\right]_{2, \tau}=f_{4}} \\ & \alpha_{2}\left(f_{1}\right)=f_{1}+f_{2}+f_{3}+f_{4} \\ & \alpha_{2}\left(f_{2}\right)=f_{4} ; \\ & \alpha_{2}\left(f_{3}\right)=0 ; \alpha_{2}\left(f_{4}\right)=0 \end{aligned}$
Morphism of Hom-Lie algebra		
$\begin{array}{ll} \phi\left(e_{1}\right)=\lambda_{1,1} f_{1}+\lambda_{1,1} f_{2}+\lambda_{1,1} f_{3}+2 \lambda_{1,1} f_{4} ; & \phi\left(e_{2}\right)=0 \\ \phi\left(e_{3}\right)=\lambda_{1,1} f_{1}+\lambda_{1,1} f_{2}+\lambda_{1,1} f_{3}+2 \lambda_{1,1} f_{4} ; & \phi\left(e_{4}\right)=0 \end{array}$		
Morphism of 3-Hom-Lie algebra induced by morphism of Hom-Lie algebra		
$\begin{array}{ll} \phi\left(e_{1}\right)=f_{1}+f_{2}+f_{3}+2 f_{4} ; & \phi\left(e_{2}\right)=0 \\ \phi\left(e_{3}\right)=f_{1}+f_{2}+f_{3}+2 f_{4} ; & \phi\left(e_{4}\right)=0 \end{array}$		

Let $\left(A_{1},[,]_{1}, \alpha_{1}\right)$ be the first Hom-Lie algebra and $\left(A_{2},[,]_{2}, \alpha_{2}\right)$ be the second Hom-Lie algebra. We denote by $\left(A_{\tau_{1}},[., ., .]_{\tau_{1}}, \alpha\right)$ the multiplicative 3 -Hom-Lie algebra induced by the first Hom-Lie algebra and ($\left.B_{\tau_{2}},[., ., .]_{\tau_{1}}, \alpha\right)$ the multiplicative 3-Hom-Lie algebra induced by the second Hom-Lie algebra. We construct the morphisms ϕ of 3-Hom-Lie algebras induced by the morphisms of Hom-Lie algebras, satisfying the condition $\tau_{2}(\phi)=\tau_{1}$, where τ_{1} is a $[,]_{1}$-trace and τ_{2} is a $[,]_{2}$-trace.

Denote the structure constants of a Hom-Lie algebra (A, [., .], α) of dimension n with respect to a basis $B=\left\{e_{1}, \ldots, e_{n}\right\}$, by $\left(c_{i, j}^{k}\right)_{1 \leq i, j, k \leq n}$ and by $\left(C_{i, j, k}^{q}\right)_{1 \leq i, j, k, q \leq n}$ those of the induced 3-Hom-Lie algebra ($A,[., ., .]_{\tau}$). A linear map $\alpha: A \rightarrow A$ will be represented by a $n \times n$ matrix, $b=\left(b_{i}^{j}\right)_{1 \leq i, j \leq n}$. A bilinear map $\varphi: A \otimes A \rightarrow A$ (2-cochain) will be represented by $n \times n$ matrix, $p=\left(p_{i, j}^{k}\right)_{1 \leq i, j, k \leq n}$. The condition for φ (represented by the matrix p) to be a 2-cocycle for a Hom-Lie algebra is written as follows

$$
\begin{equation*}
\sum_{s=1}^{n}\left(\sum_{v=1}^{n}-c_{j k}^{s} b_{v}^{i} a_{s v}^{o}+c_{i k}^{s} b_{v}^{j} a_{s v}^{o}-c_{i j}^{s} b_{v}^{k} a_{s v}^{o}+b_{s}^{i} a_{j k}^{v} c_{s v}^{o}-b_{s}^{j} a_{i k}^{v} c_{s v}^{o}+b_{s}^{k} a_{i j}^{v} c_{s v}^{o}\right)=0 \tag{5.1}
\end{equation*}
$$

A trilinear map $\psi: A \otimes A \otimes A \rightarrow A$ (2-cochain) will be represented by a $n \times n$ matrix, $a=\left(a_{i, j, k}^{v}\right)_{1 \leq i, j, k, v \leq n}$. The condition for ψ (represented by the matrix a) to be a 2 -cocycle for a 3-Hom-Lie algebra is written as follows

$$
\begin{align*}
& \sum_{s=1}^{n}\left(\sum _ { t = 1 } ^ { n } \left(\sum_{v=1}^{n}-C_{i, j, k}^{s} b_{t}^{q} b_{v}^{p} a_{s, t, v}^{o}-b_{z}^{k} C_{i, j, q}^{t} b_{v}^{p} a_{s, t, v}^{o}-b_{s}^{k} b_{t}^{q} C_{i, j, p}^{v} a_{s, t, v}^{o}+b_{s}^{i} b_{t}^{j} C_{k, q, p}^{v} a_{s, t, v}^{o}\right.\right. \tag{5.2}\\
& \left.\left.\quad+b_{s}^{i} b_{t}^{j} a_{k, q, p}^{v} C_{s, t, v}^{o}-b_{s}^{k} b_{t}^{q} a_{i, j, p}^{v} C_{s, t, v}^{o}-a_{i, j, k}^{s} b_{t}^{q} b_{v}^{p} C_{s, t, v}^{o}-b_{s}^{k} a_{i, j, q}^{t} b_{v}^{p} C_{s, t, v}^{o}\right)\right)=0
\end{align*}
$$

Solving the equations (5.1) for the first Hom-Lie algebra, we obtain the necessary conditions applied respectively to $p=\left(p_{i, j}^{k}\right)_{1 \leq i, j, k \leq n}$ and $b=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. We get

$$
\begin{array}{lll}
\varphi_{1}\left(e_{1}, e_{3}\right)=p_{1} e_{2}-p_{1} e_{4} ; & \varphi_{1}\left(e_{1}, e_{4}\right)=p_{2} e_{2}+p_{3} ; & \varphi_{1}\left(e_{1}, e_{2}\right)=-p_{2} e_{2}+p_{4} e_{4} \\
\varphi_{1}\left(e_{2}, e_{3}\right)=-p_{2} e_{2}-p_{3} e_{4} ; & \varphi_{1}\left(e_{2}, e_{4}\right)=0 ; & \varphi_{1}\left(e_{3}, e_{4}\right)=\left(p_{4}-p_{3}\right) e_{4}
\end{array}
$$

where $p_{1}, p_{2}, p_{3}, p_{4}$ are parameters. Now, for a 2 -cocycle $\varphi_{1} \in Z^{2}\left(A_{1}, A_{1}\right)$, let us consider $\varphi_{1, \tau} \in Z^{2}\left(A_{\tau_{2}}, A_{\tau_{1}}\right)$ defined as in Proposition 5.6 [13]. We get

$$
\left\{\begin{array}{l}
\varphi_{\tau_{1}}\left(e_{1}, e_{2}, e_{3}\right)=\varphi_{1}\left(e_{2}, e_{3}\right)+\varphi_{1}\left(e_{1}, e_{2}\right)=-2 p_{2} e_{2}+\left(-p_{3}+p_{4}\right) e_{4} \\
\varphi_{\tau_{1}}\left(e_{1}, e_{2}, e_{4}\right)=\varphi_{1}\left(e_{2}, e_{4}\right)=0 \\
\varphi_{\tau_{1}}\left(e_{1}, e_{3}, e_{4}\right)=\varphi_{1}\left(e_{3}, e_{4}\right)-\varphi_{1}\left(e_{1}, e_{4}\right)=-p_{2}+\left(p_{4}-2 p_{3}\right) e_{4} \\
\varphi_{\tau_{1}}\left(e_{2}, e_{3}, e_{4}\right)=-\varphi_{1}\left(e_{2}, e_{4}\right)=0
\end{array}\right.
$$

All the 2-cocycles of $A_{\tau_{1}}$ are induced by 2-cocycles of A_{1}. We eliminate all constants underlying coboundaries and we deduce that $\operatorname{dim} H^{2}\left(A_{\tau_{1}}, A_{\tau_{1}}\right)=0$. In a similar way, we determine the 2 -cocycles of the second Hom-Lie algebra A_{2}. We get

$$
\begin{array}{ll}
\varphi_{2}\left(f_{1}, f_{2}\right)=k_{1} f_{2}+k_{2} e_{3}+k_{3} e_{4} ; & \varphi_{2}\left(f_{1}, f_{3}\right)=k_{4} e_{3}+k_{5} e_{4} \\
\varphi_{2}\left(f_{1}, f_{4}\right)=k_{9} e_{3}+k_{10} e_{4} ; & \varphi_{2}\left(f_{2}, f_{3}\right)=k_{5} e_{3}+k_{6} e_{4} \\
\varphi_{2}\left(f_{2}, f_{4}\right)=k_{7} e_{3}+k_{8} e_{4} ; & \varphi_{2}\left(f_{3}, f_{4}\right)=\left(-k_{9}-k_{7}\right) e_{3}+\left(k_{1}-k_{10}-k_{8}\right) e_{4},
\end{array}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{9}, k_{10}$ are parameters. For a 2 -cocycle $\varphi_{2} \in Z^{2}\left(A_{2}, A_{2}\right)$, let us consider $\varphi_{2, \tau} \in Z^{2}\left(A_{\tau_{2}}, A_{\tau_{2}}\right)$.

$$
\left\{\begin{array}{l}
\varphi_{\tau_{2}}\left(e_{1}, e_{2}, e_{3}\right)=\varphi_{2}\left(e_{2}, e_{3}\right)=k_{5} f_{3}+k_{6} f_{4} \\
\varphi_{\tau_{2}}\left(e_{1}, e_{2}, e_{4}\right)=\varphi_{2}\left(e_{2}, e_{4}\right)=k_{7} f_{3}+k_{8} f_{4} \\
\varphi_{\tau_{2}}\left(e_{1}, e_{3}, e_{4}\right)=\varphi_{2}\left(e_{3}, e_{4}\right)=\left(-k_{9}-k_{7}\right) f_{3}+\left(k_{1}-k_{10}-k_{8}\right) f_{4} \\
\varphi_{\tau_{2}}\left(e_{2}, e_{3}, e_{4}\right)=-\varphi_{2}\left(e_{2}, e_{4}\right)=0
\end{array}\right.
$$

Solving the equations (5.2) for the second 3-Hom-Lie algebra, we obtain the necessary conditions applied respectively to $p=\left(p_{i, j}^{k}\right)_{1 \leq i, j, k \leq n}$ and $b=\left(b_{i j}\right)_{1 \leq i, j \leq n}$. We get, the space of 2-cocycles of $A_{\tau_{2}}$ is generated by

$$
\left\{\begin{array}{l}
\psi_{\tau_{2}}\left(e_{1}, e_{2}, e_{3}\right)=c_{1} f_{3}+c_{2} f_{4} \tag{5.3}\\
\psi_{\tau_{2}}\left(e_{1}, e_{2}, e_{4}\right)=c_{3} f_{3}+c_{4} f_{4} \\
\psi_{\tau_{2}}\left(e_{1}, e_{3}, e_{4}\right)=c_{5} f_{3}+c_{6} f_{4} \\
\psi_{\tau_{2}}\left(e_{2}, e_{3}, e_{4}\right)=c_{7} f_{3}+c_{8} f_{4}
\end{array}\right.
$$

There exist 2-cocycles of $A_{\tau_{2}}$ which are not induced by a 2-cocycle of A_{2}. We eliminate all constants underlying coboundaries. Gluing these bits of information together we deduce that $\operatorname{dim} H^{2}\left(A_{\tau_{2}}, A_{\tau_{2}}\right)$ is equal to the number of independent constants remaining in the expression of the 2-cocycle (5.3). Thus, we can see that $\operatorname{dim} H^{2}\left(A_{\tau_{2}}, A_{\tau_{2}}\right)=5$ and spanned by the following 2-cocycles

$$
\left\{\begin{array} { l }
{ \psi _ { 2 , 1 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 3 }) = 0 } \\
{ \psi _ { 2 , 1 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 4 }) = f _ { 3 } } \\
{ \psi _ { 2 , 1 , \tau } (f _ { 1 } , f _ { 3 } , f _ { 4 }) = 0 } \\
{ \psi _ { 2 , 1 , \tau } (f _ { 2 } , f _ { 3 } , f _ { 4 }) = 0 , }
\end{array} \left\{\begin{array} { l }
{ \psi _ { 2 , 2 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 3 }) = 0 } \\
{ \psi _ { 2 , 2 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 4 }) = 0 } \\
{ \psi _ { 2 , 2 , \tau } (f _ { 1 } , f _ { 3 } , f _ { 4 }) = f _ { 3 } } \\
{ \psi _ { 2 , 2 , \tau } (f _ { 2 } , f _ { 3 } , f _ { 4 }) = 0 }
\end{array} \quad \left\{\begin{array}{l}
\psi_{2,3, \tau}\left(f_{1}, f_{2}, f_{3}\right)=0 \\
\psi_{2,3, \tau}\left(f_{1}, f_{2}, f_{4}\right)=0 \\
\psi_{2,3, \tau}\left(f_{1}, f_{3}, f_{4}\right)=f_{4} \\
\psi_{2,3, \tau}\left(f_{2}, f_{3}, f_{4}\right)=0
\end{array}\right.\right.\right.
$$

$$
\left\{\begin{array} { l }
{ \psi _ { 2 , 4 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 3 }) = 0 } \\
{ \psi _ { 2 , 4 , \tau } (f _ { 1 } , f _ { 2 } , f _ { 4 }) = 0 } \\
{ \psi _ { 2 , 4 , \tau } (f _ { 1 } , f _ { 3 } , f _ { 4 }) = 0 } \\
{ \psi _ { 2 , 4 , \tau } (f _ { 2 } , f _ { 3 } , f _ { 4 }) = f _ { 3 } . }
\end{array} \quad \left\{\begin{array}{l}
\psi_{2,5, \tau}\left(f_{1}, f_{2}, f_{3}\right)=0 \\
\psi_{2,5, \tau}\left(f_{1}, f_{2}, f_{4}\right)=0 \\
\psi_{2,5, \tau}\left(f_{1}, f_{3}, f_{4}\right)=0 \\
\psi_{2,5, \tau}\left(f_{2}, f_{3}, f_{4}\right)=f_{4}
\end{array}\right.\right.
$$

By a direct computation, using a computer algebra system, we deduce that the first space of cocycles $Z^{1}\left(A_{1}, A_{2}\right)$ of the Hom-Lie algebra morphism ϕ is generated by

$$
\phi_{1}\left(e_{1}\right)=p f_{1}+p f_{2}+p f_{3}+2 p f_{4}=\phi_{1}\left(e_{3}\right) ; \quad \phi_{1}\left(e_{2}\right)=\phi_{1}\left(e_{4}\right)=0
$$

where p is parameter.
Now, for a 2-cocycle $\phi_{1} \in Z^{2}\left(A_{1}, A_{2}\right)$, let us consider $\phi_{1, \tau} \in Z^{2}\left(A_{\tau_{1}}, A_{\tau_{2}}\right)$ defined as in Theorem 5.7.

$$
\left\{\begin{array}{l}
\phi_{1, \tau}\left(e_{1}\right)=-\tau_{1}\left(e_{2}\right) \phi_{1}\left(e_{2}\right)+\tau_{1}\left(e_{3}\right) \phi_{1}\left(e_{3}\right)-\tau_{1}\left(e_{4}\right) \phi_{1}\left(e_{4}\right)=\phi_{1}\left(e_{3}\right) \\
\phi_{1, \tau}\left(e_{2}\right)=\tau_{1}\left(e_{1}\right) \phi_{1}\left(e_{1}\right)-\tau_{1}\left(e_{3}\right) \phi_{1}\left(e_{3}\right)-\tau_{1}\left(e_{4}\right) \phi_{1}\left(e_{4}\right)=0 \\
\phi_{1, \tau}\left(e_{3}\right)=\tau_{1}\left(e_{1}\right) \phi_{1}\left(e_{1}\right)-\tau_{1}\left(e_{2}\right) \phi_{1}\left(e_{2}\right)-\tau_{1}\left(e_{4}\right) \phi_{1}\left(e_{4}\right)=\phi_{1}\left(e_{1}\right) \\
\phi_{1, \tau}\left(e_{4}\right)=\tau_{1}\left(e_{1}\right) \phi_{1}\left(e_{1}\right)-\tau_{1}\left(e_{2}\right) \phi_{1}\left(e_{2}\right)-\tau_{1}\left(e_{3}\right) \phi_{1}\left(e_{3}\right)=0
\end{array}\right.
$$

By a direct computation, we see that all the 2-cocycles $\phi_{1, \tau}$ are induced by a 2 -cocycle ϕ_{1}.

References

[1] F. Ammar, S. Mabrouk, A. Makhlouf, Representation and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys., 61, 1898-1913 (2011).
[2] A. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys., 50, 083501 (2009).
[3] A. Arfa, N. Ben Fraj, A. Makhlouf, Cohomology and deformations of n-Lie algebra morphisms, J. Geom. Phys., 132, 64-74 (2018).
[4] J. Arnlind, A. Makhlouf, S. Silvestrov, Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras, J. Math. Phys., 51 (4), 043515 (2010).
[5] J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras, J. Math. Phys., 52 (12), 123502 (2011).
[6] J. Arnlind, A. Kitouni, A. Makhlouf, Structure and cohomology of 3-Lie algebras induced by Lie algebras, Algebra, Geometry and Mathematical Physics, Springer Proc. Math. Stat., Springer, Heidelberg, 85, 123-144 (2014).
[7] R. Bai, Y. Li, Extensions of n-Hom-Lie algebras, Front. Math. China, 10, 511-522 (2015).
[8] V. Fillippov, n-Lie algebras, Siberian Math. J., 26, 126-140 (1985).
[9] Y. Frégier, A new cohomology theory associated to deformation of Lie algebra morphisms, Lett. Math. Phys., 70, 97-107 (2004).
[10] M. Gerstenhaber, On the deformation of rings and algebras, Ann. Math., 79, 59-103 (1964).
[11] J. T. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra, 295, 314-361 (2006).
[12] S. Kasymov, Theory of n-Lie algebras, Algebra Logika, 26, 277-297 (1987).
[13] A. Kitouni, A. Makhlouf, S. Silvestrov, On $(n+1)$-Hom-Lie algebras induced by n-Hom-Lie algebras, Georgian Mathematical Journal, 23, 75-95 (2016).
[14] A. Makhlouf, On Deformation of n-Lie Algebras, in Non-Associative and NonCommutative Algebra and Operator Theory, Springer Proc. Math. Stat., Springer, Cham, 160, 55-81 (2016).
[15] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D, (3) 7, 2405-2412 (1973).
[16] A. Nijenhuis, R. W. Richardson, Deformation of homomorphisms of Lie group and Lie algebras, Bull. Amer. Math. Soc., 73, 175-179 (1967).
[17] S. Okubo, Introduction to octonions and other non-associative algebras in physics, Cambridge Univ. Press, Cambridge, UK (1995).
[18] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160, 295-315 (1994).

Received: 20.01.2022
Accepted: 09.03.2022
${ }^{(1)}$ Jouf University, Department of Mathematics, College of Sciences and Arts in Gurayat, Sakakah, Saudi Arabia and University of Sfax, Faculty of Sciences, BP 1171, 3000 Sfax, Tunisia E-mail: arfaanja.mail@gmail.com
${ }^{(2)}$ University of Carthage, Preparatory Institute for Engineering Studies of Nabeul, Tunisia E-mail: benfraj_nizar@yahoo.fr
${ }^{(3)}$ University of Haute Alsace, IRIMAS - Département de Mathématiques, F-68093 Mulhouse, France E-mail: Abdenacer.Makhlouf@uha.fr

