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Abstract

In this paper, we consider the double obstacle problem for a subelliptic equation of
p-Laplace type with VMO coefficients in Carnot groups. The interior Hölder regularity
for solutions to the double obstacle problem with subcritical growth is established while
p is close to 2.
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1 Introduction

Let G = (RN , ◦) be the Carnot group of step r ≥ 2 and let Xi, i = 1, . . . ,m, be the
left-invariant smooth vector fields on G associated with a fixed orthonormal basis of the
bracket-generating layer of its Lie algebra g. Let Xu = (X1u, . . . ,Xmu) and let Ω be
a bounded domain in G. In this paper we consider the double obstacle problem for the
following subelliptic equation of p-Laplace type

X∗(⟨A(x)Xu,Xu⟩
p−2
2 A(x)Xu) = B(x, u,Xu), (1.1)

where A = (aij(x))m×m is a symmetric positive-definite matrix with measurable coefficients
and B(x, u,Xu) satisfies a subcritical growth. Here X∗

i = −Xi is the formal adjoint to Xi:∫
Ω

(X∗
i u)ϕdx =

∫
Ω

uXiϕdx, ∀u, ϕ ∈ C∞
0 (Ω).

Obstacle problems appear in various branches of the theoretical and applied sciences,
such as nonlinear potential theory and free boundary problems, control theory and optimal
stopping, mechanical engineering and robotics, financial mathematics, fluid filtration in
porous media, see [20, 5, 24]. In the Euclidean case (when X = ∇, A(x) = I), regularity of
solutions to single and double obstacle problems for elliptic and degenerate elliptic equations
has been extensively studied, see for example [22, 7, 8, 9, 17, 28, 32]. Lieberman [28]
proved that the solutions to some degenerate double obstacle problems are as regular as
the obstacles ψ1 and ψ2 when B satisfies a natural growth condition

|B(x, u,∇u)| ≤ c(1 + |∇u|p).
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In [32], Mu and Ziemer proved the Hölder regularity for double obstacle problems of p-
Laplace type with controllable growth condition

|B(x, u,∇u)| ≤ c(1 + |∇u|p−1).

Independently, relying on a perturbation argument, Choe [8] proved that the solutions of
double obstacle problems (when B satisfies natural growth condition) have C0,α or C1,α

regularity under various regularity assumptions on the obstacles. Here we also mention
that the authors in [36] got the Hölder continuity for weak solutions to degenerate elliptic
equation

div(⟨A(x)∇u,∇u⟩
p−2
2 A(x)∇u) = B(x, u,∇u), x ∈ Ω,

where A(x) belongs to VMO(Ω) and B satisfies natural growth condition. Recently, the
local C1,α regularity of solutions to the fully nonlinear equation with variable exponents[

|Du|p(x) + a(x)|Du|q(x)
]
F (D2u) = f(x), x ∈ Ω

was obtained by Fang et al. [19]. For more regularity results about the equations with
p-Laplacians, please refer to [18, 6] and the references therein.

Based on Hörmander’s fundamental work [25], there has been tremendous work on
subelliptic PDEs and corresponding obstacle problems arising from non-commuting vector
fields, see, for example [4, 3, 29, 34, 33, 12, 35, 13, 10] for subelliptic equations or systems,
and [11, 21, 31, 1, 14, 15, 16] for subelliptic obstacle problems. Dong and Niu [13] obtained
the Morrey regularity and Hölder continuity for weak solutions to nondiagonal quasilinear
subelliptic systems with bounded VMO coefficients for p = 2. Zheng and Feng [35] studied
the C1,α

X regularity for weak solutions to subelliptic p-harmonic systems with subcritical

growth in Carnot group. In [31], Marchi proved the C1,α
X regularity of solutions to a class of

double obstacle problem on Heisenberg group. In [16], Du and his collaborators got the C0,α
X

and C1,α
X regularity of solutions to the single obstacle problem for (1.1) with controllable

growth under different restrictions on the coefficients.
Motivated by the above works, we try to generalize the results in [8] of double obstacle

problem for p-Laplace equation (i.e. A(x) = I) to the double obstacle problem for a class of
p-Laplace type subelliptic equation with discontinuous coefficients in Carnot group. Specif-
ically, we consider the double obstacle problem for (1.1) with obstacles ψ1 and ψ2, i.e., the
problem of finding a fuction u ∈ K(Ω) satisfying the variational inequality∫

Ω

⟨⟨AXu,Xu⟩
p−2
2 AXu,X(v − u)⟩dx+

∫
Ω

B(x, u,Xu)(v − u)dx ≥ 0, (1.2)

for all v ∈ K(Ω) =
{
v ∈ HW 1,p(Ω) : v − θ ∈ HW 1,p

0 (Ω), ψ1 ≤ v ≤ ψ2 a.e. in Ω
}
. Here θ ∈

HW 1,p(Ω) is a boundary value function with ψ1 ≤ θ ≤ ψ2 a.e. in Ω. We make the following
assumptions:

(H1) The matrix of coefficients A(x) ∈ VMO(Ω) is symmetric, positive-definite and
satisfies the uniform ellipticity condition that for some Λ > 0,

Λ−1|ξ|2 ≤ ⟨A(x)ξ, ξ⟩ ≤ Λ|ξ|2, a.e. x ∈ Ω, ∀ξ ∈ Rm. (1.3)
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(H2) For some L > 0, B(x, u, ξ) satisfies the subcritical growth condition

|B(x, u, ξ)| ≤ L|ξ|q, ∀0 ≤ q < p, (1.4)

when x ∈ Ω and (u, ξ) ∈ R× Rm.
(H3) The obstacle functions ψ1, ψ2 ∈ C1,γ

X,loc(Ω), 0 < γ < 1.
Let Q be the homogeneous dimension of G. We prove the following result.

Theorem 1. Suppose that (H1)-(H3) hold and u ∈ K(Ω) is a solution to the double obstacle

problem for (1.1). If p is close to 2, then for any 0 < λ < Q, we have Xu ∈ Lp,λloc (Ω).

Moreover, there exists 0 < α < 1 such that u ∈ C0,α
X (Ω).

The remainder of the paper is divided into two sections. In Section 2, we recall some
basic facts of Carnot group and some preliminary results that will be used in our proof. In
Section 3, Theorem 1 is proved by establishing a Morrey type estimate for solutions to the
double obstacle problem for (1.1).

2 Some Preliminaries

Let us first recall some preliminary facts on Carnot groups. We refer the reader to [2] and
references therein for further details.

A Carnot group G = (RN , ◦) of step r is a simply connected Lie group whose Lie algebra
g admits a decomposition g = V1 ⊕ · · · ⊕ Vr such that (i) g is stratified, i.e., [V1, Vj ] = Vj+1

for 1 ≤ j ≤ r − 1; (ii) g is r-nilpotent, i.e., [Vj , Vr] = 0 for 1 ≤ j ≤ r. The homogeneous
dimension of G is

Q =

r∑
i=1

idim(Vi)

which is often larger than the topological dimension
∑r
i=1 dim(Vi) of the group. The trivial

Carnot group with step one is RN . The most important prototype of Carnot group with
step two is the Heisenberg group Hn.

For a Carnot group G of step r ≥ 2, the left invariant orthonormal basis X1, . . . , Xm for
V1 is called the horizontal directions and the left invariant vector fields of Vi (2 ≤ i ≤ r) are
called commutator directions in the sense that they are generated as commutators of order
i of linear combinations of X1, . . . , Xm. It is well known that the family of vector fields
{X1, ..., Xm} satisfies the Hörmander finite rank condition: rank (Lie{X1, ..., Xm}) = N .
Let f be a function defined on a bounded domain of Ω ⊂ G, then Xf = (X1f, ..., Xmf)

denotes the horizontal gradient of f and hence |Xf | =
(∑m

j=1 |Xjf |2
) 1

2

.

An absolutely continuous path γ : [a, b] → G is said to be X-subunit if there exist
functions ci(t), a ≤ t ≤ b such that

m∑
i=1

ci(t)
2 ≤ 1 and γ′(t) =

m∑
i=1

ci(t)Xi(γ(t)) a.e. t ∈ [a, b].

The Carnot-Carathéodory distance dX(x, y) is defined as the infimum of those T > 0 for
which there exists a X-subunit path γ : [0, T ] → G with γ(0) = x and γ(T ) = y. This
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metric dX is left invariant and 1-homogeneous with respect to the group dilations δλ, i.e.,

dX(z ◦ x, z ◦ y) = dX(x, y), dX(δλ(x), δλ(y)) = λdX(x, y)

for all x, y, z ∈ G and λ > 0. Using these properties, one infers that the Haar measure of
Br(x) = {y ∈ G : dX(x, y) < r} is given by

|Br(x)| = ωGr
Q, (2.1)

where |Br(x)| denotes the Lebesgue measure of Br(x), ωG = |B1(e)| and e is the group
identity.

For any 1 < p < ∞, let HW 1,p(Ω) be the set of Lp(Ω) functions whose distributional
horizontal gradient is Lp(Ω):

HW 1,p(Ω) = {u ∈ Lp(Ω) : Xju ∈ Lp(Ω), j = 1, 2, · · · ,m} .

HW 1,p(Ω) is a Banach space with the norm

∥u∥HW 1,p(Ω) = ∥u∥Lp(Ω) + ∥Xu∥Lp(Ω).

Denoted by HW 1,p
0 (Ω) the closure of C∞

0 (Ω) w.r.t. ∥·∥HW 1,p . We will write u ∈ HW 1,p
loc (Ω)

to mean u ∈ HW 1,p(K) for every compact set K ⊂ Ω.

Lemma 1 (Sobolev Inequality [23, 29]). For any 1 ≤ p < ∞ and u ∈ HW 1,p(BR), there
exists a constant C > 0 such that(

−
∫
BR

|u− uR|κpdx
) 1

κp

≤ CR

(
−
∫
BR

|Xu|pdx
) 1

p

, (2.2)

where uR = −
∫
BR

udx is the integral average of u on BR, and 1 ≤ κ ≤ Q/(Q−p) if 1 ≤ p < Q;

1 ≤ κ <∞ if p ≥ Q. Moreover, for any u ∈ HW 1,p
0 (BR),(

−
∫
BR

|u|κpdx
) 1

κp

≤ CR

(
−
∫
BR

|Xu|pdx
) 1

p

. (2.3)

Let us recall several function spaces in G ([30, 33]). For convenience, we set

Ω(x,R) = Ω ∩B(x,R), fx,R =
1

|Ω(x,R)|

∫
Ω(x,R)

f(y)dy.

Definition 1. Let 1 < p < ∞ and λ ≥ 0. We say that f ∈ Lploc(Ω) belongs to the Morrey
space Lp,λ(Ω) if

∥f∥Lp,λ(Ω) = sup
x∈Ω,0<ρ<diamΩ

(
ρ−λ

∫
Ω(x,ρ)

|f(y)|pdy

) 1
p

<∞;

we say that f ∈ Lploc(Ω) belongs to the Campanato space Lp,λ(Ω) if

∥f∥Lp,λ(Ω) = sup
x∈Ω,0<ρ<diamΩ

(
ρ−λ

∫
Ω(x,ρ)

|f(y)− fx,ρ|pdy

) 1
p

<∞.
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Definition 2. Let α ∈ (0, 1). The Hölder space C0,α
X (Ω̄) is a Banach space with respect to

the norm

∥f∥C0,α
X (Ω̄) = sup

Ω
|f |+ sup

Ω̄

|f(x)− f(y)|
[dX(x, y)]α

<∞.

We say f ∈ C0,α
X (Ω), if f ∈ C0,α

X (K) for every compact set K ⊂ Ω.

Definition 3. We say that f ∈ L1
loc(Ω) belongs to BMO(Ω) if

∥f∥∗ = sup
x∈Ω,0<ρ<d0

1

|Ω(x, ρ)|

∫
Ω(x,ρ)

|f(y)− fx,ρ|dy <∞;

f belongs to VMO(Ω) if f ∈ BMO(Ω) and

ηr(f) = sup
x∈Ω,0<ρ<r

1

|Ω(x, ρ)|

∫
Ω(x,ρ)

|f(y)− fx,ρ|dy → 0, r → 0.

As in the Euclidian space, the Hölder space C0,α
X can equivalently be characterized by

the integral representation, see [30], [33]. So we have the following lemma.

Lemma 2. If u ∈ Lp,Q+pα(Ω), 1 < p <∞, 0 < α < 1, then u ∈ C0,α
X (Ω).

Lemma 3 (Iteration Lemma [22]). Let Φ(ρ) be a nonnegative and nondecreasing function
on [0, R0] satisfying

Φ(ρ) ≤ A
(( ρ

R

)a
+ ε
)
Φ(R) +BRb, 0 < ρ ≤ R ≤ R0,

where A, a, b and B are nonnegative constants, b < a. Then there exists a constant ε0 =
ε0(A, a, b) such that if ε < ε0 we have

Φ(ρ) ≤ C

(( ρ
R

)b
Φ(R) +Bρb

)
, 0 < ρ ≤ R ≤ R0,

where C is a constant depending on A, a and b.

3 Proof of the main result

For the fixed x ∈ Ω and a small R > 0, let BR = BR(x) ⊂⊂ Ω. We first recall a result
about Morrey type estimate for weak solutions to the following subelliptic equation with
constant coefficients

X∗(⟨AR/2Xw,Xw⟩
p−2
2 AR/2Xw) = X∗(⟨AR/2Xψ1, Xψ1⟩

p−2
2 AR/2Xψ1), (3.1)

where AR/2 = −
∫
BR/2

A(x)dx is the integral average of A(x).

Lemma 4 (see [16]). Let w ∈ HW 1,p(BR/2) be a weak solution to (3.1) with p close to 2.
Then for any 0 < ρ < R/2 and ε > 0, we have∫

Bρ

|Xw|pdx ≤ c

(( ρ
R

)Q
+ ε

)∫
BR/2

|Xw|pdx+ cRQ. (3.2)
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We also need the following higher integrability result for solutions to double obstacle
problem for (1.1).

Lemma 5 ([14]). Let u ∈ K(Ω) be a solution to the double obstacle problem for (1.1) and
(H1)-(H3) be satisfied. Then u ∈ HW 1,t

loc (Ω) for some t > p and there exists a constant
c > 0 such that for any BR ⊂⊂ Ω,(

−
∫
BR/2

|Xu|tdx

) 1
t

≤ c

[(
−
∫
BR

|Xu|pdx
) 1

p

+

(
−
∫
BR

(|Xψ1|t + |Xψ2|t)dx
) 1

t

]
, (3.3)

where c does not depend on R.

Lemma 6 (see [27]). Suppose that A(x) satisfies (H1). Then for any ξ, η ∈ Rm, we have

⟨⟨Aξ, ξ⟩
p−2
2 Aξ − ⟨Aη, η⟩

p−2
2 Aη, ξ − η⟩ ≥ C(p)(|ξ|2 + |η|2)

p−2
2 |ξ − η|2; (3.4)

particularly, for p ≥ 2,

⟨⟨Aξ, ξ⟩
p−2
2 Aξ − ⟨Aη, η⟩

p−2
2 Aη, ξ − η⟩ ≥ C(p)|ξ − η|p. (3.5)

On the basis of the above lemmas, we can prove the following Morrey type estimates of
solutions to the double obstacle problem for (1.1).

Lemma 7. If u ∈ K(Ω) is a solution to the double obstacle problem for (1.1) and p is close
to 2, then for any 0 < ρ ≤ R, BR ⊂⊂ Ω, and η, σ, ε > 0 it holds∫

Bρ

|Xu|pdx ≤ c

(( ρ
R

)Q
+ ϑ

)∫
BR

|Xu|pdx+ cRQ, (3.6)

where ϑ = ∥A∥(t−p)/t∗,R/2 + η + σ + ε.

Proof. Let w ∈ HW 1,p(BR/2) be a weak solution to the Dirichlet problem for (3.1) (the
existence of weak solutions can be found in [26, Theorem 2.13]), i.e.,∫

BR/2

⟨⟨AR/2Xw,Xw⟩
p−2
2 AR/2Xw,Xϕ⟩dx

=

∫
BR/2

⟨⟨AR/2Xψ1, Xψ1⟩
p−2
2 AR/2Xψ1, Xϕ⟩dx (3.7)

for all ϕ ∈ C∞
0 (BR/2) and u − w ∈ HW 1,p

0 (BR/2). Since u − w ∈ HW 1,p
0 (BR/2) and

u ≥ ψ1 on ∂BR/2, we know that w ≥ ψ1 in BR/2 by the maximum principle. On the other

hand, we note that ψ1 ≤ w ∧ ψ2 ≤ ψ2 in BR/2 and w ∧ ψ2 − u ∈ HW 1,p
0 (BR/2), where

w ∧ ψ2 = min{w,ψ2}. Hence we can choose w ∧ ψ2 as a test function in BR/2. Applying
w ∧ ψ2 to (1.2), it follows∫

BR/2

⟨⟨AXu,Xu⟩
p−2
2 AXu,X(u− w ∧ ψ2)⟩dx ≤

∫
BR/2

B(x, u,Xu)(w ∧ ψ2 − u)dx. (3.8)
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On the other hand, from (H1) and (3.7)∫
BR/2

|Xw|pdx ≤ c

∫
BR/2

⟨AR/2Xw,Xw⟩
p
2 dx

= c

∫
BR/2

⟨⟨AR/2Xw,Xw⟩
p−2
2 AR/2Xw,Xu⟩dx

+ c

∫
BR/2

⟨⟨AR/2Xψ1, Xψ1⟩
p−2
2 AR/2Xψ1, Xw −Xu⟩dx

≤ c

∫
BR/2

|Xw|p−1|Xu|dx+

∫
BR/2

|Xψ1|p−1|Xw −Xu|dx

≤ ε

∫
BR/2

|Xw|pdx+ cε

∫
BR/2

|Xu|pdx+ cε

∫
BR/2

|Xψ1|pdx.

Taking ε small enough, we have∫
BR/2

|Xw|pdx ≤ c

∫
BR/2

|Xu|pdx+ c(∥Xψ1∥L∞)RQ. (3.9)

Then it follows by (3.2) and (3.9) that for any 0 < ρ < R/2 and ε > 0,∫
Bρ

|Xu|pdx ≤ 2p
∫
Bρ

|Xw|pdx+ 2p
∫
Bρ

|Xu−Xw|pdx

≤ c

(( ρ
R

)Q
+ ε

)∫
BR/2

|Xw|pdx+ cRQ + 2p
∫
Bρ

|Xu−Xw|pdx

≤ c

(( ρ
R

)Q
+ ε

)∫
BR/2

|Xu|pdx+ cRQ + 2p
∫
BR/2

|Xu−Xw|pdx. (3.10)

To estimate the last term in the right hand side of (3.10), we consider two cases: p ≥ 2
and p < 2.

Assume p ≥ 2. From (3.5) and (3.7), we have∫
BR/2

|Xu−Xw|pdx

≤ c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu− ⟨AR/2Xw,Xw⟩

p−2
2 AR/2Xw,X(u− w)⟩dx

= c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu,X(u− w ∧ ψ2)⟩dx

+ c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu,X(w ∧ ψ2 − w)⟩dx

− c

∫
BR/2

⟨⟨AR/2Xψ1, Xψ1⟩
p−2
2 AR/2Xψ1, Xu−Xw⟩dx

= I + II + III. (3.11)
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By Young’s inequality and Hölder’s inequality we conclude that

III ≤ ε

∫
BR/2

|Xu−Xw|pdx+ c

∫
BR/2

|Xψ1|pdx

≤ ε

∫
BR/2

|Xu−Xw|pdx+ cRQ

and

II ≤ η

∫
BR/2

|Xu|pdx+ c

∫
w≥ψ2

(|Xw|p + |Xψ2|p)dx.

Choosing ϕ = w − w ∧ ψ2 as the test function in (3.7), it follows∫
w≥ψ2

|Xw|pdx ≤ c

∫
w≥ψ2

⟨AR/2Xw,Xw⟩
p
2 dx

= c

∫
w≥ψ2

⟨⟨AR/2Xw,Xw⟩
p−2
2 AR/2Xw,X(w ∧ ψ2)⟩dx

+ c

∫
w≥ψ2

⟨⟨AR/2Xψ1, Xψ1⟩
p−2
2 AR/2Xψ1, X(w − w ∧ ψ2)⟩dx

≤ c

∫
w≥ψ2

|Xw|p−1|Xψ2|dx+

∫
w≥ψ2

|Xψ1|p−1|Xw −Xψ2|dx

≤ ϵ

∫
BR/2

|Xw|pdx+ cϵ

∫
BR/2

(|Xψ1|p + |Xψ2|p)dx.

Hence ∫
w≥ψ2

|Xw|pdx ≤ c

∫
BR/2

(|Xψ1|p + |Xψ2|p)dx. (3.12)

Therefore, the integral II can be estimated by

II ≤ η

∫
BR/2

|Xu|pdx+ c

∫
BR/2

(|Xψ1|p + |Xψ2|p)dx.

By (3.8), one gets

I = c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu,X(u− w ∧ ψ2)⟩dx

≤ c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu− ⟨AXu,Xu⟩

p−2
2 AXu,X(u− w ∧ ψ2)⟩dx

+ c

∫
BR/2

B(x, u,Xu)(w ∧ ψ2 − u)dx

:= I1 + I2.

For every ξ ∈ Rm, we have (see [27])

|⟨Aξ, ξ⟩
p−2
2 Aξ − ⟨AR/2ξ, ξ⟩

p−2
2 AR/2ξ| ≤ c(p,Λ)|A−AR/2||ξ|p−1. (3.13)
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Using (3.13), (3.12) and noting that w ∧ ψ2 = ψ2 for x ∈ supp(w − w ∧ ψ2), we infer

I1 ≤ c

∫
BR/2

|A−AR/2||Xu|p−1(|Xu−Xw|+ |X(w − w ∧ ψ2)|)dx

≤ ε

∫
BR/2

|Xu−Xw|pdx+ c

∫
w≥ψ2

|X(w − ψ2)|pdx+ cε

∫
BR/2

|A−AR/2|
p

p−1 |Xu|pdx

≤ ε

∫
BR/2

|Xu−Xw|pdx

+ c

∫
BR/2

(|Xψ1|p + |Xψ2|p)dx+ cε

∫
BR/2

|A−AR/2|
p

p−1 |Xu|pdx. (3.14)

For I2, we have by the subcritical growth (1.4) and Hölder’s inequality that

I2 ≤ c

∫
BR/2

|B(x, u,Xu)||w ∧ ψ2 − u|dx

≤ c

∫
BR/2

|Xu|q|w ∧ ψ2 − u|dx

≤ c

(∫
BR/2

|Xu|pdx

) q
p
(∫

BR/2

|u− w ∧ ψ2|
p
δ dx

) δ
p

,

where δ = p − q > 0. Since ψ1 ≤ u ≤ ψ2 and ψ1, ψ2 ∈ C1,γ
X , we deduce that |u| ≤ M for

some M > 0. In view of w = u on ∂BR/2, we have by the maximum principle that |w| ≤M
in BR/2. Consequently, we conclude by Young’s inequality that

I2 ≤ cR
Qδ
p sup
x∈BR/2

(|u|+ |w|+ |ψ2|)

(∫
BR/2

|Xu|pdx

) q
p

≤ c(p, q,M,L)R
Qδ
p

(∫
BR/2

|Xu|pdx

) q
p

≤ η

∫
BR/2

|Xu|pdx+ c(p, q,M,L, η)RQ. (3.15)

Combining (3.14) and (3.15) gives

I ≤ ε

∫
BR/2

|Xu−Xw|pdx+ η

∫
BR/2

|Xu|pdx

+ cε

∫
BR/2

|A−AR/2|
p

p−1 |Xu|pdx+ c(p, q,M,L, η, ∥Xψ1∥L∞ , ∥Xψ2∥L∞)RQ.

Putting the above estimates of I, II and III into (3.11) and then taking ε = 1/4, it
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follows ∫
BR/2

|Xu−Xw|pdx ≤ c

∫
BR/2

|AR/2 −A|
p

p−1 |Xu|pdx

+ 2η

∫
BR/2

|Xu|pdx+ cRQ. (3.16)

We continue to estimate the first integral in the right hand side of (3.16). From Hölder’s
inequality and Lemma 5 we know that there exists t > p such that

c

∫
BR/2

|AR/2 −A|
p

p−1 |Xu|pdx

≤ c|BR/2|

(
−
∫
BR/2

|AR/2 −A|
pt

(p−1)(t−p) dx

) t−p
t
(
−
∫
BR/2

|Xu|tdx

) p
t

≤ c∥A∥(t−p)/t∗,R/2 |BR/2|

(
−
∫
BR/2

|Xu|tdx

) p
t

≤ c∥A∥(t−p)/t∗,R/2

∫
BR

|Xu|pdx+ c∥A∥(t−p)/t∗,R/2 |BR|
(
−
∫
BR

(|Xψ1|t + |Xψ2|t)dx
) p

t

. (3.17)

Inserting (3.17) into (3.16) yields∫
BR/2

|Xu−Xw|pdx ≤ c(∥A∥(t−p)/t∗,R/2 + η)

∫
BR

|Xu|pdx+ cRQ. (3.18)

Thus for any 0 < ρ < R/2, the estimate (3.6) follows by taking (3.18) into (3.10) and letting

ϑ(R, η, ε) = ∥A∥(t−p)/t∗,R/2 + η + ε.

When 1 < p < 2, using Hölder’s inequality, Young’s inequality and (3.9) we have∫
BR/2

|Xu−Xw|pdx

=

∫
BR/2

(
|Xu−Xw|2 (|Xu|+ |Xw|)p−2

) p
2

(|Xu|+ |Xw|)
p(2−p)

2 dx

≤ c

(∫
BR/2

|Xu−Xw|2 (|Xu|+ |Xw|)p−2
dx

) p
2
(∫

BR/2

(|Xu|+ |Xw|)p dx

) 2−p
2

≤ c

(∫
BR/2

|Xu−Xw|2
(
|Xu|2 + |Xw|2

) p−2
2 dx

) p
2
(∫

BR/2

|Xu|pdx+RQ

) 2−p
2

≤ σ

(∫
BR/2

|Xu|pdx+RQ

)
+ cσ

∫
BR/2

|Xu−Xw|2
(
|Xu|2 + |Xw|2

) p−2
2 dx. (3.19)

To estimate the last term in (3.19), we apply the inequality (3.4) and the estimates of I-III
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and (3.17) in the case p ≥ 2. It follows that∫
BR/2

|Xu−Xw|2
(
|Xu|2 + |Xw|2

) p−2
2 dx

≤ c

∫
BR/2

⟨⟨AR/2Xu,Xu⟩
p−2
2 AR/2Xu− ⟨AR/2Xw,Xw⟩

p−2
2 AR/2Xw,Xu−Xw⟩dx

≤ 2ε

∫
BR/2

|Xu−Xw|pdx+ c(∥A∥(t−p)/t∗,R/2 + η)

∫
BR

|Xu|pdx+ cRQ. (3.20)

Combining (3.20) with (3.19) and choosing ε small enough, we find that∫
BR/2

|Xu−Xw|pdx ≤ c
(
∥A∥(t−p)/t∗,R/2 + η + σ

)∫
BR

|Xu|pdx+ cRQ. (3.21)

Now for 0 < ρ < R/2, the desired estimate (3.6) follows from (3.21) and (3.10).
On the other hand, it is easy to see that for R/2 ≤ ρ ≤ R,∫

Bρ

|Xu|pdx ≤
∫
BR

|Xu|pdx ≤ 2Q
( ρ
R

)Q ∫
BR

|Xu|pdx

and this finishes the proof of Lemma 7.

Proof of Theorem 1 Let u ∈ K(Ω) be a solution to the double obstacle problem
for (1.1) with p close to 2 and let BR(x) ⊂⊂ Ω. It follows from Lemma 7 that for any
0 < ρ ≤ R and η, σ, ε > 0,∫

Bρ

|Xu|pdx ≤ c

(( ρ
R

)Q
+ ϑ

)∫
BR

|Xu|pdx+ cRQ,

where ϑ = ∥A∥(t−p)/t∗,R/2 + η + σ + ε. Since A(x) ∈ VMO(Ω), we can choose R, η, σ, and ε so

small that ϑ is small enough. By virtue of Lemma 3 we see that for any 0 ≤ α < 1,∫
Bρ

|Xu|pdx ≤ c
( ρ
R

)Q−p+pα ∫
BR

|Xu|pdx+ cρQ−p+pα,

which implies Xu ∈ Lp,λloc (Ω), λ = Q− p+ pα. By Poincaré’s inequality,∫
Bρ

|u− uρ|pdx ≤ cρp
∫
Bρ

|Xu|pdx ≤ CρQ+pα,

where C is is independent of x, ρ. By Lemma 2, we have

u ∈ C0,α
X (Ω), ∀ 0 ≤ α < 1.
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