
Bull. Math. Soc. Sci. Math. Roumanie
Tome 67 (115), No. 1, 2024, 79–89

On Mahler’s Um−numbers in fields of formal power series over finite fields
by
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Abstract
Let K be a finite field, K(x) be the quotient field of the ring of polynomials in x

with coefficients in K and K be the field of formal power series over K. In this paper,
we treat polynomials whose coefficients belong to a field extension of degree m over
K(x). We show that the values of these polynomials at certain U1-numbers in the field
K are Um− numbers in K.
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1 Introduction

1.1 The field of formal power series over a finite field

Let K be a finite field with q elements. We denote the ring of all polynomials over K by
K[x], the quotient field of K[x] by K(x) and the degree of a non-zero polynomial a(x) in
K[x] by deg(a). A non-Archimedean absolute value | · | is defined on K(x) by

|0| = 0 and

∣∣∣∣a(x)b(x)

∣∣∣∣ = qdeg(a)−deg(b),

where a(x) and b(x) are non-zero polynomials in K[x]. The completion of K(x) with respect
to | · | is called the field of formal power series over K and is denoted by K. The absolute
value | · | is uniquely extended from K(x) to K and denoted by the same notation | · |. Every
non-zero element ξ of K can be written uniquely as

ξ =

∞∑
n=r

anx
−n,

where an ∈ K for n = r, r + 1, . . . with ar ≠ 0 and r is the rational integer such that
|ξ| = q−r. The elements of K are called formal power series.

Let P (y) = a0+a1y+ · · ·+any
n be a non-zero polynomial with coefficients in K[x]. The

height H(P ) of P (y) is defined as H(P ) = max{|a0|, |a1|, . . . , |an|} and the degree of P (y)
with respect to y is denoted by deg(P ). An element ξ of K is called an algebraic formal
power series if it is algebraic over K(x) and ξ is called a transcendental formal power series
otherwise. Let α be an algebraic formal power series and P (y) be its minimal polynomial
over K[x]. Then the height H(α) and the degree deg(α) of α are defined by H(P ) and
deg(P ), respectively. Moreover, the roots of P (y) are called the conjugates of α over K(x).
Throughout, by algebraic formal power series, we mean algebraic formal power series in K.
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1.2 Mahler’s classification in K
In 1932, Mahler [10] gave a classification of complex numbers and separated transcendental
complex numbers into three disjoint classes called S−, T− and U−numbers. (See Bugeaud
[2] for detailed information about Mahler’s classification of complex numbers.) In 1978,
Bundschuh [3] introduced a classification similar to Mahler’s classification and separated
transcendental formal power series into three disjoint classes as follows.

Let ξ be a transcendental formal power series and let n and H be any positive rational
integers. Set

wn(H, ξ) = min
{
|P (ξ)| : P (y) ∈ K[x][y]\{0}, deg(P ) ≤ n,H(P ) ≤ H

}
,

wn(ξ) = lim sup
H→∞

− logwn(H, ξ)

logH
, w(ξ) = lim sup

n→∞

wn(ξ)

n
.

Bundschuh [3] proved that

wn(H, ξ) < H−nqn max{1, |ξ|}n.

This gives us wn(ξ) ≥ n for n = 1, 2, ... and therefore w(ξ) ≥ 1. If wn(ξ) is infinite for some
integers n, then denote by ν(ξ) the smallest such integer. If wn(ξ) is finite for n = 1, 2, . . . ,
put ν(ξ) = ∞. Then ξ is called

• an S−number if 1 ≤ w(ξ) < ∞ and ν(ξ) = ∞,

• a T−number if w(ξ) = ∞ and ν(ξ) = ∞,

• a U−number if w(ξ) = ∞ and ν(ξ) < ∞.

Moreover, ξ is called a Um−number if ν(ξ) = m.
In 1980, in the field of formal power series K, the first explicit examples of Um−numbers

were constructed by Oryan [14]. Recently, [4], [6], [7] and [8] contributed to constructing
explicit examples of U−numbers in K. Observe the field K is not algebraically closed.

1.3 Continued fractions in K
As in the classical continued fraction theory of real numbers, any formal power series can
be represented as a continued fraction. A formal power series ξ is in K(x) if and only if
its continued fraction expansion is finite. Let ξ be a formal power series in K\K(x), then
there is a unique representation of ξ as follows.

ξ = [b0, b1, b2, . . .] := b0 +
1

b1 +
1

b2+
1

...

,

where b0, bi ∈ K[x] with |bi| > 1 for i = 1, 2, . . . .
Define p−1 = 1, p0 = b0, q−1 = 0, q0 = 1 and

pn = bnpn−1 + pn−2, qn = bnqn−1 + qn−2 (n = 1, 2, . . .).
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By induction on n, it is easily seen that

pn
qn

= [b0, b1, . . . , bn] := b0 +
1

b1 +
1

b2+
1

...+ 1
bn

.

Moreover, by induction on n, we have the following properties:

(1)
βpn + pn−1

βqn + qn−1
= [b0, b1, . . . , bn, β] (n = 0, 1, 2, . . .), where β ∈ K\{0},

(2) pnqn−1 − pn−1qn = (−1)n−1 (n = 0, 1, 2, . . .),
(3) |qn| > |qn−1| (n = 0, 1, 2, . . .),
(4) |qn| = |b1b2 · · · bn| (n = 1, 2, . . .),
(5) |pn| = |b0b1b2 · · · bn| = |b0||qn| (n = 0, 1, 2, . . .),

(6)

∣∣∣∣ξ − pn
qn

∣∣∣∣ = 1

|bn+1||qn|2
<

1

|qn|2
(n = 1, 2, . . .).

It follows from the properties (3) and (6) that limn→∞ pn/qn = ξ. Therefore, pn/qn (n =
0, 1, 2, ...) are called the convergents of the continued fraction expansion of ξ. The reader is
directed to [5], [12] and [15] for detailed information, proofs and further results on continued
fractions in K.

1.4 Construction of our main results

In 1979, Alnıaçık [1, Chapter I, Theorem I, Theorem III] gave a method to construct explicit
examples of complex Um−numbers. In the present paper, in Theorem 1 and Theorem 2,
we establish the following analogues of Theorem I and Theorem III of Alnıaçık [1, Chapter
I] over K, respectively.

Theorem 1. Let α0, α1, . . . , αk (k ≥ 1, αk ̸= 0) be algebraic formal power series and m be
the degree of the field extension K(x)(α0, . . . , αk) over K(x). Let ξ be a U1−number with
convergents pn/qn (n = 0, 1, 2, ...). For n ≥ 0, let ωn be defined by the condition∣∣∣∣ξ − pn

qn

∣∣∣∣ = |qn|
−ωn .

If lim infn→∞ ωn > km(m− 1)[(km + 1)(m− 1) + 2] +m+ 1, then α0 + α1ξ + · · ·+ αkξ
k

is a Um−number.

Theorem 2. Let α0, α1, . . . , αk (k ≥ 1, αk ̸= 0) be algebraic formal power series and m
be the degree of the field extension K(x)(α0, . . . , αk) over K(x). Let ξ be in K\K(x) and
{pn/qn}∞n=0 be a sequence in K(x) with pn, qn ∈ K [x] and |qn| > 1 such that the following
conditions

1. lim sup
n→∞

log |qn+1|
log |qn|

= ∞,

2. lim sup
n→∞

log |qn+1|

log
∣∣∣ξ − pn

qn

∣∣∣−1 < ∞
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are satisfied. Then there exist a subsequence {pnj/qnj} such that limj→∞ pnj/qnj = ξ and
ξ is a U1−number. Further, α0 + α1ξ + · · ·+ αkξ

k is a Um−number.

We recommend the reader to see LeVeque [9] and compare it with Theorem 1. In the
next section, we cite some results we need to prove Theorem 1 and Theorem 2. We prove
Theorem 1 in Section 3 and Theorem 2 in Section 4.

2 Auxiliary Results

Lemma 1 (Müller [11], page 291). Let α be an algebraic formal power series and P (y) be
a non-zero polynomial in y with coefficients in K[x]. If P (α) ̸= 0, then

|P (α)| ≥ H(P )1−deg(α)H(α)− deg(P ).

Lemma 2 (Ooto [13], Lemma 3.2). Let α, β be in K and P (y) = α0 + α1y + · · ·+ αky
k ∈

K[y] (αk ̸= 0) be a non-constant polynomial. Let C ≥ 0 be a real number such that |α−β| ≤
C. Then

|P (α)− P (β)| ≤ max
i=1,...,k

{C, |α|}i−1|α− β| max
i=1,...,k

{|αi|}.

Theorem 3 (Can and Kekeç [4], Theorem 1.2). Let L be a finite extension of degree m
over K(x) and α1, α2, . . . , αk be in L. Let η be an algebraic formal power series. Assume
that F (η, α1, . . . , αk) = 0, where F (y, y1, . . . , yk) is a polynomial in y, y1, . . . , yk over K[x]
with degree at least 1 in y. Then

deg(η) ≤ dm

and
H(η) ≤ HmH(α1)

l1m · · ·H(αk)
lkm,

where d is the degree of F (y, y1, . . . , yk) in y, lj is the degree of F (y, y1, . . . , yk) in yj (j =
1, . . . , k) and H is the maximum of the absolute values of the coefficients of F (y, y1, . . . , yk).

Lemma 3 (Kekeç [8], Lemma 2.1). Let α0, . . . , αk (k ≥ 1, αk ̸= 0) be algebraic formal
power series. Then for θ ∈ K(x) the algebraic formal power series α0 +α1θ+ · · ·+αkθ

k is
a primitive element of K(x)(α0, . . . , αk) over K(x) except for only finitely many θ ∈ K(x).

3 Proof of Theorem 1

We prove Theorem 1 by adapting the method of the proof of Alnıaçık [1, Chapter I, Theorem
I] to the field K.

By the assumption of the theorem,∣∣∣∣ξ − pn
qn

∣∣∣∣ = |qn|
−ωn ≤ 1 (n = 0, 1, . . . ). (3.1)

We apply Lemma 2 with

P (y) = C(y) := α0 + α1y + · · ·+ αky
k ∈ K[y], α = ξ, β =

pn
qn

(n = 0, 1, . . . )
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and get ∣∣∣∣C(ξ)− C

(
pn
qn

)∣∣∣∣ ≤ c1

∣∣∣∣ξ − pn
qn

∣∣∣∣ , (3.2)

where c1 = maxi=1,...,k{1, |ξ|}i−1 maxi=1,...,k{|αi|}. Since limn→∞ pn/qn = ξ, there exists a
positive integer n0 such that for all n ≥ n0∣∣∣∣pnqn

∣∣∣∣ < 2|ξ|. (3.3)

Let Pn(y) be the minimal polynomial of C(pn/qn) over K[x] for n > n0. By Lemma 3,
there exists a positive integer n1 with n1 > n0 such that deg(C(pn/qn)) = deg(Pn) = m
holds for all n ≥ n1. It follows from (3.1) and (3.2) that∣∣∣∣C(ξ)− C

(
pn
qn

)∣∣∣∣ ≤ c1.

We apply Lemma 2 with

P (y) = Pn(y) ∈ K[x][y], α = C(ξ), β = C

(
pn
qn

)
(n ≥ n1)

and get

|Pn(C(ξ))− Pn(C

(
pn
qn

)
)| ≤ c2

∣∣∣∣C(ξ)− C

(
pn
qn

)∣∣∣∣H(Pn) (n ≥ n1), (3.4)

where c2 = maxi=1,...,m{c1, |C(ξ)|}i−1. Note that Pn(C(pn/qn)) = 0. Using (3.2) in (3.4),

|Pn(C(ξ))| ≤ c3H(Pn)|qn|−ωn (n ≥ n1), (3.5)

where c3 = c2c1. We will give an upper bound for H(Pn). Put

γn := C

(
pn
qn

)
(n ≥ n1).

Then the polynomial

F (y, y0, y1, . . . , yk) = qkny − qkny0 − pnq
k−1
n y1 − · · · − pknyk

is zero for y = γn and yi = αi (i = 0, . . . , k). From (3.3),

H ≤ |qn|k max{1, (2|ξ|)k}, (3.6)

where H is the maximum of the absolute values of the coefficients of F (y, y0, y1, . . . , yk).
We apply Theorem 3 with η = γn, d = 1, li = 1 (i = 0, . . . , k) and F (y, y0, y1, . . . , yk) and
get

H(γn) ≤ HmH(α0)
mH(α1)

m · · ·H(αk)
m.

Using (3.6) and the fact that H(γn) = H(Pn) in the inequality above, we obtain

H(Pn) ≤ c4|qn|km (n ≥ n1), (3.7)
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where c4 = (max{1, (2|ξ|)k}H(α0) · · ·H(αk))
m. Since limn→∞ |qn| = ∞, there exists a

positive integer n2 with n2 > n1 such that

H(Pn) ≤ |qn|km+1 (3.8)

holds for all n ≥ n2. Combining (3.5) and (3.8),

0 < |Pn(C(ξ))| ≤ c3

H(Pn)
ωn

km+1−1
(n ≥ n2). (3.9)

Note that Pn(C(ξ)) ̸= 0 as ξ is transcendental over K(x). Since lim supn→∞ ωn = ∞, we
have a subsequence {ωnj}∞j=1 such that limj→∞ ωnj = ∞. We infer from (3.9) that

0 < |Pnj
(C(ξ))| ≤ c3H(Pnj

)−θnj (3.10)

for sufficiently large j, where

θnj
=

ωnj

km+ 1
− 1, lim

j→∞
θnj

= ∞.

The sequence {H(Pnj
)} is not bounded from above and so it has a subsequence {H(Pnjt

)}∞t=1

such that

1 < H(Pnj1
) < H(Pnj2

) < H(Pnj3
) < · · · , lim

t→∞
H(Pnjt

) = ∞.

Since deg(Pnj
) = m, (3.10) implies that C(ξ) is a U−number with

ν(C(ξ)) ≤ m. (3.11)

Now we wish to show that ν(C(ξ)) ≥ m to complete the proof. If m = 1, then ν(C(ξ)) =
m. Let m > 1 and P (y) be a polynomial over K[x] with 1 ≤ deg(P ) ≤ m − 1 and with
sufficiently large height H(P ). Similar to (3.4), we apply Lemma 2 with P (y) and get

|P (C(ξ))− P (γn)| ≤ c2|C(ξ)− γn|H(P ) (n ≥ n2). (3.12)

Using (3.1) and (3.2) in (3.12),

|P (C(ξ))| ≥ |P (γn)| − c3|qn|−ωnH(P ) (n ≥ n2). (3.13)

Since deg(γn) = m (n ≥ n2) and deg(P ) < m, it follows that P (γn) ̸= 0 (n ≥ n2). Hence we
apply Lemma 1 with α = γn (n ≥ n2) and get

|P (γn)| ≥ H(P )1−mH(γn)
1−m (n ≥ n2). (3.14)

Using (3.7) and the fact that H(Pn) = H(γn) in (3.14),

|P (γn)| ≥
c5

H(P )m−1|qn|km(m−1)
(n ≥ n2),

where c5 = c1−m
4 . Combining this with (3.13),

|P (C(ξ))| ≥ c5
H(P )m−1|qn|km(m−1)

− c3H(P )

|qn|ωn
(n ≥ n2). (3.15)
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It follows from |ξ − pn/qn| = |qn|
−ωn and the properties of continued fractions in K that

|qn|ωn = |qn+1||qn|. (3.16)

By the assumption of the theorem, there exists a positive integer n3 with n3 > n2 such that

ωn > km(m− 1)[(km+ 1)(m− 1) + 2] +m+ 1 (n ≥ n3). (3.17)

Let v be the unique positive integer satisfying |qv| ≤ H(P ) < |qv+1|. It follows from (3.16)
and (3.17) that

|qv| < |qv+1|
1

(km+1)(m−1)+2 (v ≥ n3).

If |qv| ≤ H(P ) < |qv+1|1/[(km+1)(m−1)+2] holds, then we take n = v in (3.15), (3.16) and get

|P (C(ξ))| ≥ c5
H(P )(km+1)(m−1)

− c3
H(P )(km+1)(m−1)+1

.

Since H(P ) is sufficiently large, we have H(P ) > 2c3/c5. This implies together with the
inequality above that

|P (C(ξ))| ≥ c5
2H(P )(km+1)(m−1)

. (3.18)

If |qv+1|1/[(km+1)(m−1)+2] ≤ H(P ) < |qv+1| holds, then we take n = v + 1 in (3.15) and get

|P (C(ξ))| ≥ c5
H(P )km(m−1)[(km+1)(m−1)+2]+m−1

− c3
H(P )ωv+1−1

.

Using (3.17) and H(P ) > 2c3/c5 in the inequality above, we obtain

|P (C(ξ))| ≥ c5
2H(P )km(m−1)[(km+1)(m−1)+2]+m−1

. (3.19)

We infer from (3.18) and (3.19) that

|P (C(ξ))| ≥ c5
2H(P )km(m−1)[(km+1)(m−1)+2]+m−1

holds for all polynomials P (y) ∈ K[x][y] with 1 ≤ deg(P ) ≤ m − 1 and with sufficiently
large height H(P ). This gives us

ν(C(ξ)) ≥ m. (3.20)

We deduce from (3.11) and (3.20) that ν(C(ξ)) = m. Thus, C(ξ) is a Um−number in K.

4 Proof of Theorem 2

We prove Theorem 2 by adapting the method of the proof of Alnıaçık [1, Chapter I, Theorem
III] to the field K.

From the conditions of the theorem, since there exist a subsequence {log |qnj+1|/ log |qnj
|}

such that limj→∞ log |qnj+1|/ log |qnj
| = ∞, we have

lim
j→∞

|qnj | = ∞, lim
j→∞

log
∣∣∣ξ − pnj

qnj

∣∣∣−1

log |qnj |
= ∞. (4.1)
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This implies that limj→∞ pnj/qnj = ξ and ξ is a U1−number in K.
To prove the last assertion of the theorem, we put C(y) = α0 + α1y + · · · + αky

k and
will first show that ν(C(ξ)) ≤ m. Set∣∣∣∣ξ − pnj

qnj

∣∣∣∣ = |qnj
|−ωnj .

From (4.1), we have

lim
j→∞

ωnj
= ∞. (4.2)

Put

γnj
:= C

(
pnj

qnj

)
∈ K.

Let Pnj
(y) be the minimal polynomial of γnj

overK[x]. By Lemma 3, deg(γnj
) = deg(Pnj

) =
m holds for sufficiently large j. We apply Lemma 2 with

P (y) = C(y) ∈ K[y], α = ξ, β =
pnj

qnj

(j = 0, 1, . . . ).

Using the steps between (3.2) and (3.9) in the proof of Theorem 1, we get

0 < |Pnj
(C(ξ))| ≤ c6

H(Pnj
)

ωnj
km+1−1

(j ≥ N1), (4.3)

where N1 is a positive rational integer and c6 is a real constant. As in the proof of Theorem
1, we infer from (4.2) and (4.3) that C(ξ) is a U−number with

ν(C(ξ)) ≤ m. (4.4)

Now we wish to show that ν(C(ξ)) ≥ m. If m = 1, then ν(C(ξ)) = m. Assume that
m > 1. As in the steps between (3.2) and (3.7) in the proof of Theorem 1, there exist
positive real constants c7 and c8 such that∣∣∣∣C(ξ)− C

(
pnj

qnj

)∣∣∣∣ ≤ c7

∣∣∣∣ξ − pnj

qnj

∣∣∣∣ (j ≥ N2) (4.5)

and

H(Pnj
) ≤ c8|qnj

|km (j ≥ N2), (4.6)

where N2 is a positive integer with N2 > N1. Let P (y) be a polynomial over K[x] with
1 ≤ deg(P ) ≤ m−1 and with sufficiently large height H(P ). As in (3.12), we apply Lemma
2 and get

|P (C(ξ))− P (γnj
)| ≤ c9|C(ξ)− γnj

|H(P ) (j ≥ N2).

Using (4.5) in the inequality above,

|P (C(ξ))| ≥ |P (γnj )| − c10

∣∣∣∣ξ − pnj

qnj

∣∣∣∣H(P ) (j ≥ N2), (4.7)
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where c10 = c7c9. Put

λ := lim sup
n→∞

log |qn+1|

log
∣∣∣ξ − pn

qn

∣∣∣−1 .

From the second condition of the theorem, λ is a non-negative real number. There exists a
positive integer t such that t > λ. Then

log |qnj+1|

log
∣∣∣ξ − pnj

qnj

∣∣∣−1 < t (j ≥ N3),

where N3 is a positive integer with N3 > N2. So we have∣∣∣∣ξ − pnj

qnj

∣∣∣∣ < 1

|qnj+1|1/t
(j ≥ N3). (4.8)

Combining (4.7) and (4.8),

|P (C(ξ))| ≥ |P (γnj )| −
c10H(P )

|qnj+1|1/t
(j ≥ N3). (4.9)

Since deg(γnj
) = m (j ≥ N3) and deg(P ) < m, it follows that P (γnj

) ̸= 0 (j ≥ N3). Hence
we apply Lemma 1 and get

|P (γnj
)| ≥ H(P )1−mH(Pnj

)1−m (j ≥ N3). (4.10)

Combining (4.6), (4.9) and (4.10),

|P (C(ξ))| ≥ c11
H(P )m−1|qnj |km(m−1)

− c10H(P )

|qnj+1|1/t
(j ≥ N3), (4.11)

where c11 = c1−m
8 . Since limj→∞

log |qnj+1|
log |qnj

| = ∞, there exists a positive integer N4 with

N4 > N3 such that
log |qnj+1|
log |qnj

|
> µ (4.12)

holds for j ≥ N4, where µ = km(m − 1)[(km + 1)(m − 1) + 2]t2 + (m + 1)t. Let v be the
unique positive integer satisfying

|qnv | ≤ H(P ) < |qnv+1|.

If |qnv
| ≤ H(P ) < |qnv+1|1/t[(km+1)(m−1)+2] holds, then we take nj = nv in (4.11) and get

|P (C(ξ))| ≥ c11
2H(P )km(m−1)+m−1

. (4.13)

If |qnv+1|1/t[(km+1)(m−1)+2] ≤ H(P ) < |qnv+1| holds, we take nj = nv + 1 in (4.11) and get

|P (C(ξ))| ≥ c11
H(P )km(m−1)t[(km+1)(m−1)+2]+m−1

− c10H(P )

|qnv+2|1/t
. (4.14)
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Now we take nj = nv + 1 in (4.12) and get

|qnv+2|1/t > |qnv+1|km(m−1)t[(km+1)(m−1)+2]+m+1.

Using the inequality H(P ) < |qnv+1| in the inequality above, we obtain

|qnv+2|1/t > H(P )km(m−1)t[(km+1)(m−1)+2]+m+1. (4.15)

Combining (4.14) and (4.15),

|P (C(ξ))| > c11
2H(P )km(m−1)t[(km+1)(m−1)+2]+m−1

. (4.16)

We infer from (4.13) and (4.16) that

|P (C(ξ))| > c11
2H(P )km(m−1)t[(km+1)(m−1)+2]+m−1

holds for all polynomials P (y) ∈ K[x][y] with 1 ≤ deg(P ) ≤ m − 1 and with sufficiently
large height H(P ). This gives us

ν(C(ξ)) ≥ m. (4.17)

We deduce from (4.4) and (4.17) that ν(C(ξ)) = m. Thus, C(ξ) is a Um−number in K.
We give the following example to illustrate Theorem 2.

Example 1. In Theorem 2, let us take

ξ =

∞∑
i=0

x−3i! , pn = x3n!
n∑

i=0

x−3i! and qn = x3n!

(n = 0, 1, . . . ).

Then, by Theorem 2, ξ is a U1−number and 1 + ξ + · · ·+ ξk−1 + m
√
xξk is a Um−number,

where m is any positive rational integer, 1 denotes the identity element of K and m
√
x is

defined as a root of the polynomial ym − x.
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Doğuş University, Faculty of Engineering, Department of Computer Engineering,
Esenkent District, Nato Yolu Street, No: 265, 34775, Ümraniye, Istanbul, Turkey
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