Some q-congruences related to double sums by
 Hanfei Song ${ }^{(1)}$, Chun Wang ${ }^{(2)}$

Abstract

In this paper, we provide two new q-congruences associated with double basic hypergeometric sums. A related conjecture on q-congruences modulo the cube and fourth powers of a cyclotomic polynomial is also proposed.

Key Words: q-congruences, supercongruences, cyclotomic polynomial, basic hypergeometric series. 2020 Mathematics Subject Classification: Primary 11A07; Secondary 11B65.

1 Introduction

In 1997, Van Hamme [21] conjectured the following nice p-adic analogue:

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 3}(6 k+1) \frac{\left(\frac{1}{3}\right)_{k}^{6}}{k!^{6}} \equiv-p \Gamma_{p}\left(\frac{1}{3}\right)^{9} \quad\left(\bmod p^{4}\right) \tag{1.1}
\end{equation*}
$$

where p is an odd prime such that $p \equiv 1(\bmod 6), \Gamma_{p}(x)$ is the p-adic Gamma function and $(x)_{n}=\Gamma(x+n) / \Gamma(x)$ is the shifted-factorial for any nonnegative integer n and complex number x. In 2016, Long and Ramakrishna [15, Theorem 2] showed that (1.1) can be generalized to the modulus p^{6} case. Later Guo and Schlosser [8, Theorem 2.3] established a partial q-analogue of the generalization of (1.1). Quite recently, together with the creative microscoping method developed by Guo and Zudilin [9] and the Chinese remainder theorem for coprime polynomials, Wei [25] further extended this partial q-analogue as follows: let n be a positive integer, then for $n \equiv 1(\bmod 3)$, modulo $[n] \Phi_{n}(q)^{4}$,

$$
\begin{align*}
& \sum_{k=0}^{(n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{6}}{\left(q^{3} ; q^{3}\right)_{k}^{6}} q^{3 k} \\
& \quad \equiv[n] \frac{\left(q^{2} ; q^{3}\right)_{(n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(n-1) / 3}^{3}}\left\{1+[n]^{2}\left(2-q^{n}\right) \sum_{j=1}^{(n-1) / 3}\left(\frac{q^{3 j-1}}{[3 j-1]^{2}}-\frac{q^{3 j}}{[3 j]^{2}}\right)\right\}, \tag{1.2}
\end{align*}
$$

and for $n \equiv 2(\bmod 3)$, modulo $[n] \Phi_{n}(q)^{5}$,

$$
\begin{align*}
& \sum_{k=0}^{(2 n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{6}}{\left(q^{3} ; q^{3}\right)_{k}^{6}} q^{3 k} \\
& \quad \equiv[2 n] \frac{\left(q^{2} ; q^{3}\right)_{(2 n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(2 n-1) / 3}^{3}}\left\{1+[2 n]^{2}\left(2-q^{2 n}\right) \sum_{j=1}^{(2 n-1) / 3}\left(\frac{q^{3 j-1}}{[3 j-1]^{2}}-\frac{q^{3 j}}{[3 j]^{2}}\right)\right\} \tag{1.3}
\end{align*}
$$

Here $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ is the q-shifted factorial; $[n]=[n]_{q}=1+q+$ $\cdots+q^{n-1}$ denotes the q-integer and $\Phi_{n}(q)$ stands for the n-th cyclotomic polynomial in q :

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta_{n}^{k}\right)
$$

where ζ_{n} is an n-th primitive root of unity. During the past few years, congruences and q-analogues have attracted broad attentions of many authors $[6,10,11,12,13,16,17,18$, $19,23,24,26]$. Especially, in 2015, Swisher [20] proved the following congruence involving double sums: for any odd prime p,

$$
\begin{equation*}
\sum_{k=0}^{(p-1) / 2}(-1)^{k}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}}{k!^{3} 8^{k}} \sum_{j=1}^{k}\left(\frac{1}{(2 j-1)^{2}}-\frac{1}{16 j^{2}}\right) \equiv 0 \quad(\bmod p) \tag{1.4}
\end{equation*}
$$

which was originally conjectured by Long [14]. Later, Gu and Guo [3] gave a q-analogue of (1.4): for any positive odd integer n, modulo $\Phi_{n}(q)$,

$$
\begin{equation*}
\sum_{k=0}^{(n-1) / 2}(-1)^{k}[6 k+1] \frac{\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{4} ; q^{4}\right)_{k}^{3}} \sum_{j=1}^{k}\left(\frac{q^{2 j-1}}{[2 j-1]^{2}}-\frac{q^{4 j}}{[4 j]^{2}}\right) \equiv 0 \tag{1.5}
\end{equation*}
$$

Shortly afterwards, Guo and Lian [7], Wang and Yu [22] as well as Fang and Guo [1] carried on this topic and presented several similar results.

Motivated by the above work, in this paper, we shall provide two new q-supercongruences on double basic hypergeometric sums, which are analogous to (1.5).

Theorem 1. Let $n>1$ be an odd integer. Then, modulo $\Phi_{n}\left(q^{2}\right)^{2}$,

$$
\begin{equation*}
\sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{4}}{\left(q^{4} ; q^{4}\right)_{k}^{4}} q^{4 k} \sum_{j=1}^{k}\left(\frac{q^{4 j-6}}{[2 j-3]_{q^{2}}^{2}}-\frac{q^{4 j}}{[2 j]_{q^{2}}^{2}}\right) \equiv 0 \tag{1.6}
\end{equation*}
$$

Setting $n=p$ be a positive odd prime and then taking $q \rightarrow 1$ in (1.6), we obtain

$$
\sum_{k=0}^{(p+1) / 2}(4 k-1)^{3} \frac{\left(-\frac{1}{2}\right)_{k}^{4}}{k!^{4}} \sum_{j=1}^{k}\left(\frac{1}{(2 j-3)^{2}}-\frac{1}{4 j^{2}}\right) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Theorem 2. Let n be a positive integer such that $n \equiv t(\bmod 3)$ with $t \in\{1,2\}$. Then, modulo $\Phi_{n}(q)^{2}$,

$$
\begin{align*}
& \sum_{k=0}^{(t n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{6}}{\left(q^{3} ; q^{3}\right)_{k}^{6}} q^{3 k} \sum_{j=1}^{k}\left(\frac{q^{3 j-2}}{[3 j-2]^{2}}-\frac{q^{3 j}}{[3 j]^{2}}\right) \\
& \quad \equiv[t n] \frac{\left(q^{2} ; q^{3}\right)_{(t n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(t n-1) / 3}^{3}} \sum_{j=1}^{(t n-1) / 3}\left(\frac{q^{3 j-1}}{[3 j-1]^{2}}-\frac{q^{3 j}}{[3 j]^{2}}\right) \tag{1.7}
\end{align*}
$$

When $n=p$ is a positive prime with $p \equiv t(\bmod 3)$ and $q \rightarrow 1$ in (1.7), we arrive at

$$
\begin{aligned}
& \sum_{k=0}^{(t p-1) / 3}(6 k+1) \frac{\left(\frac{1}{3}\right)_{k}^{6}}{k!^{6}} \sum_{j=1}^{k}\left(\frac{1}{(3 j-2)^{2}}-\frac{1}{9 j^{2}}\right) \\
& \quad \equiv t p \frac{\left(\frac{2}{3}\right)_{(t p-1) / 3}^{3}}{(1)_{(t p-1) / 3}^{3}} \sum_{j=1}^{t p-1) / 3}\left(\frac{1}{(3 j-1)^{2}}-\frac{1}{9 j^{2}}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Conjecture 1. The q-congruence (1.7) holds modulo $\Phi_{n}(q)^{3}$ when $t=1$ and holds modulo $\Phi_{n}(q)^{4}$ when $t=2$.

2 Proof of Theorem 1

We first require the following assistant results. Note that the first one was in fact given in the proof of Guo [4, Eq. (5.5)] and the second one due to Guo [5, Eq. (1.11)].

Lemma 1. Let $n>1$ be an odd integer. Then

$$
\begin{equation*}
\sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}\left(q^{-2+2 n} ; q^{4}\right)_{k}\left(q^{-2-2 n} ; q^{4}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}} q^{4 k}=0 \tag{2.1}
\end{equation*}
$$

Proof. Recall Watson's ${ }_{8} \phi_{7}$ transformation formula [2, Appendix (III.18)]:

$$
\left.\begin{array}{l}
{ }_{8} \phi_{7}\left[\begin{array}{cccccc}
a, & q a^{\frac{1}{2}}, & -q a^{\frac{1}{2}}, & b, & c, & d, \\
a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & a q / b, & a q / c, & a q / d, & a q / e, \\
& a q^{n+1}
\end{array} ; q, \frac{a^{2} q^{n+2}}{b c d e}\right.
\end{array}\right]
$$

where the basic hypergeometric series ${ }_{r+1} \phi_{r}$ is defined as

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1} ; q\right)_{k}\left(a_{2} ; q\right)_{k} \cdots\left(a_{r+1} ; q\right)_{k}}{(q ; q)_{k}\left(b_{1} ; q\right)_{k} \cdots\left(b_{r} ; q\right)_{k}} z^{k}
$$

The expression on the left-hand side of (2.1) is equal to

$$
\begin{aligned}
& -q^{-4}{ }_{8} \phi_{7}\left[\begin{array}{cccccccc}
q^{-2}, & q^{3}, & -q^{3}, & q^{3}, & q^{3}, & q^{-2}, & q^{-2+2 n}, & q^{-2-2 n} \\
& q^{-1}, & -q^{-1}, & q^{-1}, & q^{-1}, & q^{4}, & q^{4-2 n}, & q^{4+2 n}
\end{array} ; q^{4}, q^{4}\right] \\
& =-q^{-4} \frac{\left(q^{2} ; q^{4}\right)_{(n+1) / 2}\left(q^{6-2 n} ; q^{4}\right)_{(n+1) / 2}}{\left(q^{4} ; q^{4}\right)_{(n+1) / 2}\left(q^{4-2 n} ; q^{4}\right)_{(n+1) / 2}}{ }_{4} \phi_{3}\left[\begin{array}{c}
q^{-4}, q^{-2}, q^{-2+2 n}, q^{-2-2 n} \\
q^{-1}, q^{-1}, q^{-4}
\end{array} ; q^{4}, q^{4}\right] \text {. }
\end{aligned}
$$

The proof of (2.1) is completed because of $\left(q^{6-2 n} ; q^{4}\right)_{(n+1) / 2}$ in the numerator.

Lemma 2. Let $n>1$ be an odd integer. Then

$$
\begin{equation*}
\sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{4}}{\left(q^{4} ; q^{4}\right)_{k}^{4}} q^{4 k} \equiv 0 \quad\left(\bmod [n]_{q^{2}} \Phi_{n}\left(q^{2}\right)^{3}\right) \tag{2.2}
\end{equation*}
$$

Proof of Theorem 1. By (2.1), we get

$$
\begin{align*}
& \sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{4}}{\left(q^{4} ; q^{4}\right)_{k}^{4}} q^{4 k}-0 \\
& \quad=\sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k}\left(\frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}}-\frac{\left(q^{-2+2 n} ; q^{4}\right)_{k}\left(q^{-2-2 n} ; q^{4}\right)_{k}}{\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}}\right) \\
& \quad=\sum_{k=0}^{(n+1) / 2}[4 k-1]_{q^{2}}[4 k-1]^{2} \frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}}{\left(q^{4} ; q^{4}\right)_{k}^{2}} q^{4 k} \\
& \quad \times\left(\frac{\left(q^{-2} ; q^{4}\right)_{k}^{2}\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}-\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{-2+2 n} ; q^{4}\right)_{k}\left(q^{-2-2 n} ; q^{4}\right)_{k}}{\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}}\right) . \tag{2.3}
\end{align*}
$$

Observing that

$$
\left(1-q^{a+n+d j}\right)\left(1-q^{a-n+d j}\right)=\left(1-q^{a+d j}\right)^{2}-\left(1-q^{n}\right)^{2} q^{a+d j-n}
$$

and $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, we obtain that

$$
\begin{aligned}
\left(q^{2-n} ; q^{2}\right)_{k}\left(q^{2+n} ; q^{2}\right)_{k} & =\prod_{j=1}^{k}\left(1-q^{-n+2 j}\right)\left(1-q^{n+2 j}\right) \\
& =\prod_{j=1}^{k}\left(\left(1-q^{2 j}\right)^{2}-\left(1-q^{n}\right)^{2} q^{2 j-n}\right) \\
& \equiv\left(q^{2} ; q^{2}\right)_{k}^{2}-\left(q^{2} ; q^{2}\right)_{k}^{2} \sum_{j=1}^{k} \frac{\left(1-q^{n}\right)^{2}}{\left(1-q^{2 j}\right)^{2}} q^{2 j-n} \quad\left(\bmod \Phi_{n}(q)^{4}\right)
\end{aligned}
$$

since the remaining terms are multiples of $\left(1-q^{n}\right)^{4}$. Similarly, there holds

$$
\begin{aligned}
& \left(q^{-1-n} ; q^{2}\right)_{k}\left(q^{-1+n} ; q^{2}\right)_{k} \\
& \quad \equiv\left(q^{-1} ; q^{2}\right)_{k}^{2}-\left(q^{-1} ; q^{2}\right)_{k}^{2} \sum_{j=1}^{k} \frac{\left(1-q^{n}\right)^{2}}{\left(1-q^{2 j-3}\right)^{2}} q^{2 j-n-3} \quad\left(\bmod \Phi_{n}(q)^{4}\right)
\end{aligned}
$$

It follows that

$$
\begin{align*}
& \left(q^{-2} ; q^{4}\right)_{k}^{2}\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}-\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{-2+2 n} ; q^{4}\right)_{k}\left(q^{-2-2 n} ; q^{4}\right)_{k} \\
& \quad \equiv\left(q^{-2} ; q^{4}\right)_{k}^{2}\left(q^{4} ; q^{4}\right)_{k}^{2}[n]_{q^{2}}^{2} \sum_{j=1}^{k}\left(\frac{q^{4 j-2 n-6}}{[2 j-3]_{q^{2}}^{2}}-\frac{q^{4 j-2 n}}{[2 j]_{q^{2}}^{2}}\right) \quad\left(\bmod \Phi_{n}\left(q^{2}\right)^{4}\right) \tag{2.4}
\end{align*}
$$

Inserting (2.2) and (2.4) into (2.3), we conclude

$$
\sum_{k=0}^{(n+1) / 2} \frac{[4 k-1]_{q^{2}}[4 k-1]^{2}\left(q^{-2} ; q^{4}\right)_{k}^{4} q^{4 k}}{\left(q^{4} ; q^{4}\right)_{k}^{2}\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k}} \sum_{j=1}^{k}\left(\frac{q^{4 j-2 n-6}}{[2 j-3]_{q^{2}}^{2}}-\frac{q^{4 j-2 n}}{[2 j]_{q^{2}}^{2}}\right) \equiv 0 \quad\left(\bmod \Phi_{n}\left(q^{2}\right)^{2}\right)
$$

which is equal to (1.6) since $\left(q^{4-2 n} ; q^{4}\right)_{k}\left(q^{4+2 n} ; q^{4}\right)_{k} \equiv\left(q^{4} ; q^{4}\right)_{k}^{2}\left(\bmod \Phi_{n}\left(q^{2}\right)^{2}\right)$.

3 Proof of Theorem 2

We first give the following lemma (or see the proof of [25, Proposition 4.1]).
Lemma 3. Let n be an odd integer. Then, for $n \equiv t(\bmod 3)$ with $t=\{1,2\}$,

$$
\begin{equation*}
\sum_{k=0}^{(t n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{4}\left(q^{1-t n} ; q^{3}\right)_{k}\left(q^{1+t n} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k}^{4}\left(q^{3+t n} ; q^{3}\right)_{k}\left(q^{3-t n} ; q^{3}\right)_{k}} q^{3 k}=[t n] \frac{\left(q^{2} ; q^{3}\right)_{(t n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(t n-1) / 3}^{3}} \tag{3.1}
\end{equation*}
$$

Proof. By means of Jackson's ${ }_{8} \phi_{7}$ transformation [2, Appendix (II.22)]:

$$
\begin{aligned}
& { }_{8} \phi_{7}\left[\begin{array}{cccccc}
a, & q a^{\frac{1}{2}}, & -q a^{\frac{1}{2}}, & b, & c, & d, \\
a^{\frac{1}{2}}, & -a^{\frac{1}{2}}, & a q / b, & a q / c, & a q / d, & a q / e, \\
& a q^{n+1} ; q, q
\end{array}\right] \\
& \quad=\frac{(a q ; q)_{n}(a q / b c ; q)_{n}(a q / b d ; q)_{n}(a q / c d ; q)_{n}}{(a q / b ; q)_{n}(a q / c ; q)_{n}(a q / d ; q)_{n}(a q / b c d ; q)_{n}},
\end{aligned}
$$

where $a^{2} q=b c d e q^{-n}$, we have

$$
{ }_{8} \phi_{7}\left[\begin{array}{cccccccc}
q, & q^{\frac{7}{2}}, & -q^{\frac{7}{2}}, & q, & q, & q, & q^{1+t n}, & q^{1-t n} \\
& q^{\frac{1}{2}}, & -q^{\frac{1}{2}}, & q^{3}, & q^{3}, & q^{3}, & q^{3-t n}, & q^{3+t n} ; q^{3}, q^{3}
\end{array}\right]=[t n] \frac{\left(q^{2} ; q^{3}\right)_{(t n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(t n-1) / 3}^{3}}
$$

where $t \in\{1,2\}$, which leads us to (3.1) immediately.

Proof of Theorem 2. We first consider $n \equiv 1(\bmod 3)$ case. By (3.1), we arrive at

$$
\begin{align*}
\sum_{k=0}^{(n-1) / 3} & {[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{6}}{\left(q^{3} ; q^{3}\right)_{k}^{6}} q^{3 k}-[n] \frac{\left(q^{2} ; q^{3}\right)_{(n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(n-1) / 3}^{3}} } \\
& =\sum_{k=0}^{(n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{4}}{\left(q^{3} ; q^{3}\right)_{k}^{4}} q^{3 k}\left(\frac{\left(q ; q^{3}\right)_{k}^{2}}{\left(q^{3} ; q^{3}\right)_{k}^{2}}-\frac{\left(q^{1-n} ; q^{3}\right)_{k}\left(q^{1+n} ; q^{3}\right)_{k}}{\left(q^{3+n} ; q^{3}\right)_{k}\left(q^{3-n} ; q^{3}\right)_{k}}\right) \\
= & \sum_{k=0}^{(n-1) / 3}[6 k+1] \frac{\left(q ; q^{3}\right)_{k}^{4}}{\left(q^{3} ; q^{3}\right)_{k}^{4}} q^{3 k} \\
& \times\left(\frac{\left(q ; q^{3}\right)_{k}^{2}\left(q^{3+n} ; q^{3}\right)_{k}\left(q^{3-n} ; q^{3}\right)_{k}-\left(q^{3} ; q^{3}\right)_{k}^{2}\left(q^{1-n} ; q^{3}\right)_{k}\left(q^{1+n} ; q^{3}\right)_{k}}{\left(q^{3} ; q^{3}\right)_{k}^{2}\left(q^{3+n} ; q^{3}\right)_{k}\left(q^{3-n} ; q^{3}\right)_{k}}\right) \tag{3.2}
\end{align*}
$$

Analogous to (2.4), we deduce

$$
\begin{align*}
& \left(q ; q^{3}\right)_{k}^{2}\left(q^{3+n} ; q^{3}\right)_{k}\left(q^{3-n} ; q^{3}\right)_{k}-\left(q^{3} ; q^{3}\right)_{k}^{2}\left(q^{1-n} ; q^{3}\right)_{k}\left(q^{1+n} ; q^{3}\right)_{k} \\
& \quad \equiv\left(q ; q^{3}\right)_{k}^{2}\left(q^{3} ; q^{3}\right)_{k}^{2}[n]^{2} \sum_{j=1}^{k}\left(\frac{q^{3 j-n-2}}{[3 j-2]^{2}}-\frac{q^{3 j-n}}{[3 j]^{2}}\right) \quad\left(\bmod \Phi_{n}(q)^{4}\right) \tag{3.3}
\end{align*}
$$

Substituting (1.2) and (3.3) into (3.2), we obtain

$$
\begin{aligned}
& \sum_{k=0}^{(n-1) / 3} \frac{[6 k+1]\left(q ; q^{3}\right)_{k}^{6} q^{3 k}}{\left(q^{3} ; q^{3}\right)_{k}^{4}\left(q^{3-n} ; q^{3}\right)_{k}\left(q^{3+n} ; q^{3}\right)_{k}} \sum_{j=1}^{k}\left(\frac{q^{3 j-n-2}}{[3 j-2]^{2}}-\frac{q^{3 j-n}}{[3 j]^{2}}\right) \\
& \quad \equiv[n] \frac{\left(q^{2} ; q^{3}\right)_{(n-1) / 3}^{3}}{\left(q^{3} ; q^{3}\right)_{(n-1) / 3}^{3}}\left(2-q^{n}\right) \sum_{j=1}^{(n-1) / 3}\left(\frac{q^{3 j-1}}{[3 j-1]^{2}}-\frac{q^{3 j}}{[3 j]^{2}}\right) \quad\left(\bmod \Phi_{n}(q)^{2}\right)
\end{aligned}
$$

which is equivalent to the $t=1$ case of (1.7).
Using the similar argument as above, for $n \equiv 2(\bmod 3)$, we replace n by $2 n$ in (3.2) and (3.3) respectively and then substitute the responding results into (1.3). This finishes the proof of the case $t=2$ of (1.7).

Acknowledgement The authors would like to thank the anonymous referee for his/her helpful comments on this paper. The work is supported by the National Natural Science Foundation of China (Grant Nos. 11871258 and 12001376).

References

[1] J.-P. Fang, V. J. W. Guo, Two q-congruences involving double basic hypergeometric sums, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 116, 25 (2022).
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge (2004).
[3] C.-Y. Gu, V. J. W. Guo, A q-analogue of a hypergeometric congruence, Bull. Aust. Math. Soc., 101, 294-298 (2020).
[4] V. J. W. Guo, Common q-analogues of some different supercongruences, Results Math., 74, 131 (2019).
[5] V. J. W. Guo, Proof of some q-supercongruences modulo the fourth power of a cyclotomic polynomial, Results Math., 75, 77 (2020).
[6] V. J. W. Guo, Proof of a generalization of the (C.2) supercongruence of Van Hamme, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115, 45 (2021).
[7] V. J. W. Guo, X. Lian, Some q-congruences on double basic hypergeometric sums, J. Difference Equ. Appl., 27, 453-461 (2021).
[8] V. J. W. Guo, M. J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx., 53, 155-200 (2021).
[9] V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346, 329-358 (2019).
[10] V. J. W. Guo, W. Zudilin, Dwork-type supercongruences through a creative q microscope, J. Combin. Theory, Ser. A, 178, 105362 (2021).
[11] L. Li, S.-D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114, 190 (2020).
[12] J.-C. Liu, Supercongruences for sums involving Domb numbers, Bull. Sci. Math., 169, 102992 (2021).
[13] Y. Liu, X. Wang, q-analogues of the (G.2) supercongruence of Van Hamme, Rocky Mountain J. Math., 51, 1329-1340 (2021).
[14] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math., 249, 405-418 (2011).
[15] L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290, 773-808 (2016).
[16] D. McCarthy, R. Osburn, A p-adic analogue of a formula of Ramanujan, Arch. Math. (Basel), 91, 492-504 (2008).
[17] E. Mortenson, A p-adic supercongruence conjecture of van Hamme, Proc. Amer. Math. Soc., 136, 4321-4328 (2008).
[18] R. Osburn, W. Zudilin, On the (K,2) supercongruence of Van Hamme, J. Math. Anal. Appl., 433, 706-711 (2016).
[19] H. Song, C. Wang, Some q-supercongruences modulo the fifth power of a cyclotomic polynomial from squares of q-hypergeometric series, Results Math., 76, 222 (2021).
[20] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci., 2, 18 (2015).
[21] L. van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, p-adic functional analysis (Nijmegen, 1996), 223-236, Lecture Notes in Pure and Appl. Math., 192, Dekker, New York (1997).
[22] X. Wang, M. Yu, Some new q-congruences on double sums, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115, 9 (2021).
[23] X. Wang, M. Yue, A q-analogue of a Dwork-type supercongruence, Bull. Aust. Math. Soc., 103, 303-310 (2021).
[24] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A, 182, 105469 (2021).
[25] C. Wei, Some q-congruences modulo the fifth and sixth powers of a cyclotomic polynomial, arXiv:2104.07025v1.
[26] C. Wei, Y. Liu, X. Wang, q-Supercongruences from the q-Saalschütz identity, Proc. Amer. Math. Soc., 149, 4853-4861 (2021).

Received: 05.05.2022
Revised: 13.07.2022
Accepted: 16.07.2022
${ }^{(1)}$ School of Mathematics and Statistics, Xinyang Normal University, Xinyang, 464000, P. R. China and
Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China E-mail: hanfeisong00@163.com
${ }^{(2)}$ Department of Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China E-mail: wangchun@shnu.edu.cn

