Some degree sequences are determined by Laplacian spectra of the corresponding graphs
 by
 Ranran $\mathrm{Wang}^{(1)}$, Fei Wen ${ }^{(2)}$, Mengyue Yuan ${ }^{(3)}$

Abstract

Let $\mathcal{G}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ be the set of simple graphs with the degree sequence $\operatorname{deg}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$, and $\mathcal{G}^{*}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}\right)$ the set of connected graphs with the degree sequence $\operatorname{deg}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}\right)$. In this paper, we first give the numbers of spanning tree of a bicyclic graph as well as a tricyclic graph, and then show that some degree sequences of graphs in $\mathcal{G}\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ (resp. $\mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$, $\mathcal{G}^{*}\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ and $\left.\mathcal{G}^{*}\left(4^{n_{4}}, 3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)\right)$ are determined by Laplacian spectra (write as $D L S$ for short) of the corresponding graphs. Moreover, for the non- $D L S$ degree sequences we present some L-cospectral mates to indicate that their L-cospectral degree sequences do exist. By the way, all of these extend the previous results about Laplacian spectral determinations of some degree sequences in [23]. Besides, we revise the references of Theorems 6 and 7 in [23].

Key Words: Spanning tree, Laplacian spectrum, determined by Laplacian spectrum, degree sequence, cospectral graph.
2020 Mathematics Subject Classification: 05C07, 05C50.

1 Introduction

Throughout this paper, all graphs considered are undirected, finite and simple. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where $|V(G)|=n$ and $|E(G)|=m$. If $\emptyset \neq E^{\prime}(G) \subseteq E(G)$, then we say that $G\left[E^{\prime}(G)\right]$ is an edge-induced subgraph of G. Often, we denote by $d_{G}\left(v_{i}\right)$ and $N_{G}\left(v_{i}\right)$ the degree and the neighbor set of a vertex v_{i} in G, respectively. Let $A(G)$ be the adjacency matrix, and $D(G)$ the diagonal degree matrix of G. The Laplacian matrix and the signless Laplacian matrix of G are defined as $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$, respectively. The L-spectrum of G, denoted by $\operatorname{Spec}_{L}(G)$, is a multiset consisting of the L-eigenvalues together with their multiplicities. Conventionally, the Laplacian eigenvalues and the signless Laplacian eigenvalues of graph G are ordered respectively in nonincreased sequence as follows: $\mu_{1}(G) \geq \mu_{2}(G) \geq \cdots \geq \mu_{n-1}(G) \geq \mu_{n}(G)=0$ and $q_{1}(G) \geq q_{2}(G) \geq \cdots \geq q_{n-1}(G) \geq q_{n}(G)=0$.

A sequence $\mathbf{d}=\left(\Delta^{n_{\Delta}}, \ldots, k^{n_{k}}, \ldots, 1^{n_{1}}, 0^{n_{0}}\right)$ is graphic [1] if there is a simple graph with the degree sequence \mathbf{d}. We denote by $\operatorname{deg}(G)=\left(\Delta^{n_{\Delta}}, \ldots, k^{n_{k}}, \ldots, 1^{n_{1}}, 0^{n_{0}}\right)$ the degree sequence of G, where $n_{0}+n_{1}+\ldots+n_{\Delta}=n$ and $k^{n_{k}}$ means that G has n_{k} vertices with degree k. Besides, we also express the degree sequence of G in non-increasing order of nonnegative integers, i.e., $d_{1}(G) \geq d_{2}(G) \geq \cdots \geq d_{n}(G)$, where $d_{G}\left(v_{i}\right)=d_{i}(G)$ for $i \in\{1,2, \ldots, n\}$. For a given graphic sequence $\left(\Delta^{n_{\Delta}}, \ldots, k^{n_{k}}, \ldots, 1^{n_{1}}, 0^{n_{0}}\right)$, let $\mathcal{G}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ be the set
of simple graphs with the degree sequence $\operatorname{deg}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$, and $\mathcal{G}^{*}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}\right.$, $1^{n_{1}}$) the set of connected graphs with the degree sequence $\operatorname{deg}\left(\Delta^{n_{\Delta}}, \ldots, 2^{n_{2}}, 1^{n_{1}}\right)$. In addition, if there is no risk of confusion, we simplify $d_{G}\left(v_{i}\right), d_{i}(G), N_{G}\left(v_{i}\right), \mu_{i}(G)$ and $q_{i}(G)$ as $d\left(v_{i}\right), d_{i}, N\left(v_{i}\right), \mu_{i}$ and q_{i}, respectively.

As usual, $K_{1, n-1}, P_{n}, C_{n}$ and K_{n} always denote the star, path, cycle and complete graph with n vertices, respectively. A connected graph G with n vertices and $n+c-1$ edges is called a c-cyclic graph. Such a c is called cyclomatic number of G and denoted by $c(G)$. A p-rose graph is a graph with $p(\geq 2)$ cycles that all cycles meet in one vertex. Let $R(s, t)$ stand for the 2 -rose graph (called ∞-graph also) with C_{s} and C_{t} where $n=s+t-1$.

Two graphs are called to be L-cospectral if they have the same Laplacian spectrum. Especially, if $H \not \equiv G$, in this case H is said to be a L-cospectral mate of G. A graph G is called to be determined by its (signless) Laplacian spectrum, simplified as (resp. $D Q S$) $D L S$ if there does not exist other non-isomorphic graph H such that H and G are (resp. Q-) L-cospectral. Similarly, a degree sequence of a graph G is determined by the (signless) Laplacian spectrum if any graph H is (resp. Q-) L-cospectral with G such that they have the same degree sequence.

Which graphs are determined by their spectra seems to be a difficult problem in the theory of graph spectra. In particular, the Laplacian spectral determination of graphs is an important branch and it had drawn more and more attention. In 2003, van Dam et al.[5] reconsidered this question and showed that some graphs such as C_{n} and P_{n} are $D L S$. Up to now, many graphs have been proved to be determined by their L-spectra. Wen et al. [22] proved that the wind-wheel graphs are $D L S$ as well as $D Q S$, and then, Liu et al.[14] gave a Laplacian spectral characterization of the butterfly-like graphs. In addition, we refer the readers to $[10,13,15]$ and the references therein.

As we all know, in order to prove that a given graph G is $D L S$, we first need to characterize the degree sequence of any graph H that is L-cospectral G, and then prove that G and H are isomorphic. Thus, considering the Laplacian spectral determinations of the graphic degree sequences is an interesting problem for the Laplacian spectral characterization of a graph. In 2007, Zhang et al.[24] considered the degree sequence determined by Q-spectrum, and obtained the spectral certainty of degree sequence with some restrictions. After then, Liu et al. in [17] proved that except for two exceptions, the degree sequence of a connected graph G with $d_{2}(G)=2$ is determined by Laplacian spectra of G. Wen et al. in [23] investigated the Laplacian spectral determinations of the degree sequences of $\mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ and $\mathcal{G}^{*}\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$, and independently of Liu et al. [17] proved that any graph $G \in \mathcal{G}^{*}\left(\Delta^{1}, 2^{n_{2}}, 1^{n_{1}}\right)(\Delta \geq 3)$, whose degree sequence is determined by Laplacian spectrum except that G is a bicyclic graph with $\Delta=4$.

Motivated above, in this paper, we focus to consider which degree sequences are determined by the Laplacian spectra of the corresponding graphs. Firstly, we give the numbers of spanning tree of a bicyclic graph and a tricyclic graph, respectively. Next, we show that some degree sequences of graphs in $\mathcal{G}\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ (resp. $\mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right), \mathcal{G}^{*}\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ and $\left.\mathcal{G}^{*}\left(4^{n_{4}}, 3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)\right)$ are determined by Laplacian spectra of the corresponding graphs. Moreover, for the non- $D L S$ degree sequences we present some L-cospectral mates to indicate that their L-cospectral degree sequences do exist. By the way, all of the above extend the previous results about Laplacian spectral determinations of some degree sequences in [23]. Besides, we revise the references of Theorems 6 and 7 , which were recalled as preparative knowledge in [23].

2 Preliminaries

Lemma 1 ([5], Lemma 4; [18], Theorem 3.1). From the Laplacian matrix of a graph, one can obtain the following cospectral invariants by its Laplacian spectrum.
(i) the number of vertices;
(ii) the number of edges;
(iii) the number of spanning trees;
(iv) the number of components;
(v) the sum of the squares of degrees of vertices.

Lemma 2 ([3], Corollary 4.3; [13], Lemma 5.1). Let G be a graph with n vertices, m edges, and t triangles. Then

$$
\sum_{i=1}^{n} \mu_{i}^{3}=\sum_{i=1}^{n} d_{i}^{3}+3 \sum_{i=1}^{n} d_{i}^{2}-6 t, \quad \sum_{i=1}^{n} q_{i}^{3}=\sum_{i=1}^{n} d_{i}^{3}+3 \sum_{i=1}^{n} d_{i}^{2}+6 t
$$

Based on Lemma 1 and the first equation of Lemma 2, Liu and Huang in [12] gave a Laplacian cospectral invariant

$$
\varepsilon(G)=6 t-\sum_{i=1}^{n}\left(d_{i}-2\right)^{3}
$$

Lemma 3 ([12], Lemma 3.3). Let G and H be two graphs with $\operatorname{deg}(G)=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, $\operatorname{deg}(H)=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$, and triangles t and t^{\prime}, respectively. If G and H are L-cospectral, then $\varepsilon(G)=\varepsilon(H)$.

Lemma 4 ([3], Proposition 2.1, Theorem 4.7; [8], Corollary 2). If G is a connected graph with n vertices and at least one edge, then

$$
d_{1}+1 \leq \mu_{1}(G) \leq q_{1}(G) \leq d_{1}+d_{2}
$$

where the first equality holds if and only if $d_{1}=n-1$, the second equality holds if and only if G is bipartite, and the third equality holds if and only if G is regular or $G \cong K_{1, n-1}$.

Lemma 5 ([19], Lemma 5.5). Let G be a c-cyclic graph. If $c \in\{3,4\}$, then $t(G) \leq c+1$, where $t(G)$ is the number of triangles in G.

Lemma 6 ([8], Corollary 2). Let G be a graph containing at least one edge. Then $\mu_{1}(G) \geq$ $d_{1}(G)+1$, the equality holds if and only if $d_{1}(G)=n-1$.

For convenience, we denote by $\mathcal{H}_{1}=\left\{P_{l}, C_{2 l+1} \mid l \geq 1\right\}$ and $\mathcal{H}_{2}=\left\{K_{1,3}, K_{1,3}+e, K_{4}-\right.$ $\left.e, K_{4}, C_{2 k}(k \geq 2)\right\}$.

Lemma 7 ([21], Corollary 2.3). Let G be a graph of order n. Then
(a) $\mu_{1}(G)<4$ if and only if G is disjoint union of graphs in \mathcal{H}_{1}; and
(b) $\mu_{1}(G)=4$ if and only if G is disjoint union of graphs in $\mathcal{H}_{1} \cup \mathcal{H}_{2}$ with at least one component in \mathcal{H}_{2}.

Lemma 8 (See [5], Propositions 1 and 5; [15], Lemma 2.5). For any $n \geq 3, C_{n}, P_{n}$ and $K_{1, n-1}$ are DLS.

Lemma 9. Let G be a connected graph with $\operatorname{deg}(G)=\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$. Then $t(G) \leq 3$, and the equality holds if only and if $G \in\left\{G_{1}, G_{2}\right\}$, where $t(G)$ is the number of triangles in G.

Proof. Let G be a graph of $\mathcal{G}^{*}\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$. To attain the maximum number of triangles of G, we first assume that there are three vertices, v_{1}, v_{2} and v_{3} (say) forming a triangle $v_{1} v_{2} v_{3}$ in G. Since G has no degree- 3 vertex and $\Delta(G)=4$, there must be two vertices v_{4} and v_{5} (say), incident with one vertex of the triangle $v_{1} v_{2} v_{3}$. Without loss of generality, we suppose that v_{3} is the vertex associated with v_{4} and v_{5}.

Case 1. $v_{4} \sim v_{5}$.
One can see that both v_{4} and v_{5} are non-adjacent to any vertex of v_{1} and v_{2} due to $n_{3}=0$. Noticing that $n_{4}=2$, so we claim that one of the vertices v_{1}, v_{2}, v_{4} and v_{5} must be the another degree- 4 vertex since if not, there exists a degree- 4 vertex on another branch of G, which is linked by a path as G is a connected graph, and so, it will always produce a degree- 3 vertex in G, a contradiction. Therefore, we may suppose that v_{4} is just the degree- 4 vertex, and v_{6} and v_{7} are the other two adjacent vertices. To maximize the number of triangles in G, v_{6} and v_{7} should be adjacent and they have no other neighbors in G. Hence $G \cong G_{1}$ (see Fig. 1), and here $t(G)=3$.

Case 2. $v_{4} \nsim v_{5}$.
If $N\left(v_{4}\right) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$ and $N\left(v_{5}\right) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$, there is just one vertices of v_{1}, v_{2}, v_{4} and v_{5} appends at most one triangle since G has no degree- 3 vertices, and so, $t(G) \leq 2$; if $N\left(v_{4}\right) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$ and $N\left(v_{5}\right) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$ (say), then we claim that v_{4} is possibly adjacent to one of the vertices v_{1} and v_{2}, since if not, G must be contained a vertex with degree 3 , which leads to a contradiction, and thus $t(G)=2$; otherwise, v_{4} and v_{5} should be adjacent to the vertex in $\left\{v_{1}, v_{2}\right\}$. We notice that $\operatorname{deg}(G)=\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$, hence, v_{4} and v_{5} are only adjacent to one of v_{1} and v_{2}, simultaneously. Thus, $G \cong G_{2}$ (see Fig. 1), and here $t(G)=3$.

Therefore, we have $t(G) \leq 3$ for any $G \in \mathcal{G}^{*}\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$, and $t(G)=3$ if only and if $G \in\left\{G_{1}, G_{2}\right\}$.

Figure 1: Graphs G_{1} and G_{2}
Corollary 1. Let $G \in \mathcal{G}^{*}\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$ and $n_{2}>0$. If $t(G)=3$, then G is isomorphic to either G_{1} or G_{2}; if $t(G)=2$, then G is one of $\mathcal{B}\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$ shown in Fig. 2.

Figure 2: Graphs in $\mathcal{B}\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$

Lemma 10. Let G be a bicyclic graph, and $\tau(G)$ the number of spanning trees of G. Let l_{1} and l_{2} denote the lengths of the first two shortest cycles of G (not necessary strictly ordered from first shortest length to second shortest length), if the two cycles share s common vertices in G, where $0 \leq s \leq\left\lfloor\frac{\min \left\{l_{1}, l_{2}\right\}}{2}\right\rfloor+1$. Then

$$
\tau(G)= \begin{cases}l_{1} l_{2}, & \text { if } s=0 \\ l_{1} l_{2}-s^{2}+2 s-1, & \text { if } 1 \leq s \leq\left\lfloor\frac{\min \left\{l_{1}, l_{2}\right\}}{2}\right\rfloor+1\end{cases}
$$

Proof. Let C_{1} and C_{2} be the first two shortest cycles in G, and let l_{1} and l_{2} denote the lengths of C_{1} and C_{2}, respectively. Then one can obtain $\tau(G)$ by the well-known Breaking circle. Since G is a bicyclic graph, we only need to delete one edge on each cycle of G. So we discuss each case as follows.

If $s=0$, then barbell graph is the base graph of G. So we have $l_{1} l_{2}$ ways to yield G to be a tree, and thus $\tau(G)=l_{1} l_{2}$.

Otherwise, C_{1} and C_{2} have s common vertices, and yield $s-1$ common edges in G. Clearly, there are $l_{1} l_{2}$ ways to break C_{1} and C_{2}. Note that if two edges delete in those $s-1$ common edges, then the remainder always contains one cycle, and so, there are $(s-1)^{2}$ ways in this case. Therefore,

$$
\tau(G)=l_{1} l_{2}-(s-1)^{2}=l_{1} l_{2}-s^{2}+2 s-1
$$

A tricyclic graph is said to be a tricyclic base graph if it contains no pendant vertices. From reference [9] we know that there are exactly 15 types of tricyclic base graphs. Based on these we re-divide into 17 types of such base graphs, and present the numbers of spanning trees of tricyclic graphs below.

Figure 3: Graphs $G_{01}-G_{17}$
Lemma 11. Let G be a tricyclic graph. Suppose that $C_{i}(i=1,2,3)$ are the first three shortest cycles of G, and let l_{i} denote the length of each cycle C_{i} in G (not necessary strictly ordered from first shortest length to third shortest length). If C_{1} and C_{3} share s_{1} common vertices, C_{2} and C_{3} share s_{2} common vertices, and C_{1} and C_{2} share s_{3} common vertices in G. Then
(1) If $s_{1} \leq 1$ and $s_{2} \leq 1$ and $s_{3} \leq 1$, then $\tau(G)=l_{1} l_{2} l_{3}$;
(2) If $2 \leq s_{1} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{3}\right\}}{2}\right\rfloor+1$ and $s_{2} \leq 1$ and $s_{3} \leq 1$, then $\tau(G)=l_{1} l_{2} l_{3}-l_{2}\left(s_{1}-1\right)^{2}$;
(3) If $2 \leq s_{1} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{3}\right\}}{2}\right\rfloor+1$ and $2 \leq s_{2} \leq\left\lfloor\frac{\min \left\{l_{2}, l_{3}\right\}}{2}\right\rfloor+1$ and $s_{3} \leq 1$, then $\tau(G)=$ $l_{1} l_{2} l_{3}-l_{2} s_{1}^{2}+2 l_{2} s_{1}-l_{1} s_{2}^{2}+2 l_{1} s_{2}-l_{1}-l_{2} ;$
(4) Otherwise, let E_{13}, E_{23} and E_{12} denote the shared edge sets of C_{1} and C_{3}, C_{2} and C_{3}, and C_{1} and C_{2}, respectively. Then

$$
\tau(G)= \begin{cases}\alpha, & \text { if } E_{13}=E_{23}=E_{12} \\ \beta, & \text { if } E_{13}=E_{23} \subset E_{12} \\ \gamma, & \text { if } E_{13} \neq E_{23} \neq E_{12} \text { and } E_{13} \cap E_{12}=E_{23} \\ \eta, & \text { if } E_{13} \neq E_{23} \neq E_{12} \text { and } E_{13} \cap E_{23} \cap E_{12}=\emptyset\end{cases}
$$

where

$$
\begin{aligned}
\alpha= & l_{1} l_{2} l_{3}+6 s_{1}+2 s_{1} l_{1}+2 s_{1} l_{2}+2 s_{1} l_{3}+2 s_{1}^{3}-s_{1}^{2} l_{1}-s_{1}^{2} l_{2}-s_{1}^{2} l_{3}-6 s_{1}^{2}-l_{1}-l_{2} \\
& -l_{3}-2 ; \\
\beta= & l_{1} l_{2} l_{3}+2 s_{1} l_{1}+2 s_{1} l_{2}+2 s_{3} l_{3}+4 s_{1}+2 s_{3}+2 s_{1}^{2} s_{3}-s_{1}^{2} l_{1}-s_{1}^{2} l_{2}-s_{3}^{2} l_{3}-2 s_{1}^{2} \\
& -4 s_{1} s_{3}-l_{1}-l_{2}-l_{3}-2 ; \\
\gamma= & l_{1} l_{2} l_{3}+2 s_{1} s_{2} s_{3}+2 s_{1}+2 s_{2}+2 s_{3}-2 s_{1} s_{2}-2 s_{1} s_{3}-2 s_{2} s_{3}+2 s_{1} l_{2}+2 s_{2} l_{1} \\
& +2 s_{3} l_{3}-s_{1}^{2} l_{2}-s_{2}^{2} l_{1}-s_{3}^{2} l_{3}-l_{1}-l_{2}-l_{3}-2 ; \\
\eta= & l_{1} l_{2} l_{3}-2 s_{1} s_{2} s_{3}-2 s_{1}-2 s_{2}-2 s_{3}+2 s_{1} s_{2}+2 s_{1} s_{3}+2 s_{2} s_{3}+2 s_{1} l_{2}+2 s_{2} l_{1} \\
& +2 s_{3} l_{3}-s_{1}^{2} l_{2}-s_{2}^{2} l_{1}-s_{3}^{2} l_{3}-l_{1}-l_{2}-l_{3}+2
\end{aligned}
$$

Proof. Let $\tau(G)$ be the number of spanning trees of G, and let E_{12}, E_{13} and E_{23} be the shared edge sets of C_{1} and C_{2}, C_{1} and C_{3}, and C_{2} and C_{3}, respectively. Note that a tricyclic graph and its base graph have the same number of spanning tree. Thus, if there is no confusion, we may assume that G is the base graph of a tricyclic graph. For the graph G, one can obtain $\tau(G)$ by the well-known Breaking circle. Now, we discuss it in the following.

Case 1. If $s_{1} \leq 1$ and $s_{2} \leq 1$ and $s_{3} \leq 1$, then each two of three cycles C_{1}, C_{2} and C_{3} have no common edges in G, that is, $G \in\left\{G_{01}, G_{02}, \ldots, G_{07}\right\}$ (see Fig. 3 for instance). Note that l_{i} is the length of each cycle C_{i} for $i=1,2,3$. So, there are $l_{1} l_{2} l_{3}$ ways to obtain a spanning tree, and thus $\tau(G)=l_{1} l_{2} l_{3}$.

Case 2. If $2 \leq s_{1} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{3}\right\}}{2}\right\rfloor+1$ and $s_{2} \leq 1$ and $s_{3} \leq 1$, then G is obtained from θ-graph by attaching a cycle or appending a cycle, see $G_{08}-G_{11}$ in Fig. 3. Since $2 \leq s_{1} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{3}\right\}}{2}\right\rfloor+1$ the θ-graph consists of C_{1} and C_{3}. Together with Lemma 10 we know that, θ-graph has $l_{1} l_{3}-\left(s_{1}-1\right)^{2}$ ways to break the circle. Note that C_{2} has l_{2} ways to break the cycle. Therefore,

$$
\tau(G)=\left[l_{1} l_{3}-\left(s_{1}-1\right)^{2}\right] l_{2}=l_{1} l_{2} l_{3}-l_{2}\left(s_{1}-1\right)^{2}
$$

Case 3. If $2 \leq s_{1} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{3}\right\}}{2}\right\rfloor+1$ and $2 \leq s_{2} \leq\left\lfloor\frac{\min \left\{l_{2}, l_{3}\right\}}{2}\right\rfloor+1$ and $s_{3} \leq 1, G$ has either the form G_{12} or G_{13}, shown in Fig. 3. Since $s_{3} \leq 1, C_{1}$ and C_{2} share no common edges in G, that is, $\left|E_{12}\right|=0$. For the sets of E_{13} and E_{23}, if one of the edges in E_{13} and E_{23} are deleted simultaneously. Then the remainder still contains a cycle. Hence, it is necessary to break the cycle again, and so, we can get $\left(s_{1}-1\right)\left(s_{2}-1\right)\left(l_{1}+l_{2}+l_{3}-2 s_{1}-2 s_{2}+4\right)$ ways to make G become a tree; if just one edge is deleted from E_{13} or E_{23}, then the remainder becomes a bicyclic graph with a shared edge set E_{23} or E_{13}. So, we can continue to delete an edge on
each of the two cycles except for the common edge set in the bicyclic graph. Thus, one can get $\left(s_{1}-1\right)\left(l_{1}+l_{3}-2 s_{1}-s_{2}+3\right)\left(l_{2}-s_{2}+1\right)+\left(s_{2}-1\right)\left(l_{2}+l_{3}-2 s_{2}-s_{1}+3\right)\left(l_{1}-s_{1}+1\right)$ ways to break the two cycles; otherwise, there are $\left(l_{1}-s_{1}+1\right)\left(l_{2}-s_{2}+1\right)\left(l_{3}-s_{1}-s_{2}+2\right)$ ways to break all cycles of G. Thus, summing up the above, $\tau(G)=l_{1} l_{2} l_{3}-l_{2} s_{1}^{2}+2 l_{2} s_{1}-l_{1} s_{2}^{2}+2 l_{1} s_{2}-l_{1}-l_{2}$.

Case 4. Otherwise, any two cycles in G share the common vertices no less than 2. For convenience, we may assume that $\left|E_{12}\right| \geq\left|E_{13}\right| \geq\left|E_{23}\right|$, and here consider the relationships among E_{12}, E_{13} and E_{23} in the following.

Case 4.1. When $E_{12}=E_{13}=E_{23}=E^{\prime}$ (say), we see that C_{1}, C_{2} and C_{3} have the same shared edge set, and thus, G has the form G_{14} (see Fig. 3). If one deletes an edge in E^{\prime}, the remainder becomes a bicyclic graph. Since it is hard to determine which two cycles in the bicyclic graph are the first two shortest cycles, we can proceed to delete one edge from each of any two sets in $E\left(C_{1}\right) \backslash E^{\prime}, E\left(C_{2}\right) \backslash E^{\prime}$ and $E\left(C_{3}\right) \backslash E^{\prime}$, so we can obtain $\left(s_{1}-1\right)\left(\left(l_{3}-s_{1}+1\right)\left(l_{2}-s_{1}+1\right)+\left(l_{3}-s_{1}+1\right)\left(l_{1}-s_{1}+1\right)+\left(l_{1}-s_{1}+1\right)\left(l_{2}-s_{1}+1\right)\right)$ ways to break circles. Otherwise, we only delete one edge on each $C_{i}(i=1,2,3)$ other than E^{\prime}, there are $\left(l_{3}-s_{1}+1\right)\left(l_{2}-s_{1}+1\right)\left(l_{1}-s_{1}+1\right)$ ways to break the cycles. From the above, we can get $\tau(G)=\alpha$.

Case 4.2. When two of E_{13}, E_{23} and E_{12} are the same, without loss of generality, we denote by $E_{12} \neq E_{13}=E_{23}=E^{\prime \prime}$ (say). Clearly, $E_{13}=E_{23}$ implies that C_{1} and C_{2} share the same edges as C_{3}, so we have $E^{\prime \prime} \subseteq E_{12}$ because E_{12} is the common edge set of C_{1} and C_{2}. Note that $E_{12} \neq E^{\prime \prime}$. Hence $E^{\prime \prime} \subset E_{12}$, which implies that G has the form G_{15} as shown in Fig. 3. Now, according to the deleted edges we classify the following cases.

- If one edge is deleted in $E^{\prime \prime}$ but not in $E_{12} \backslash E^{\prime \prime}$, then we can respectively delete one edge from two sets in $E\left(C_{1}\right) \backslash E_{12}, E\left(C_{2}\right) \backslash E_{12}$ and $E\left(C_{3}\right) \backslash E_{12}$. So, one can get $\left(s_{1}-\right.$ 1) $\left(\left(l_{1}-s_{3}+1\right)\left(l_{2}-s_{3}+1\right)+\left(l_{1}-s_{3}+1\right)\left(l_{3}-s_{1}+1\right)+\left(l_{2}-s_{3}+1\right)\left(l_{3}-s_{1}+1\right)\right)$ ways;
- If one edge is deleted in $E_{12} \backslash E^{\prime \prime}$ but not in $E^{\prime \prime}$, then the remainder becomes a bicyclic graph in which the two cycles share no common edges, and thus we have $\left(s_{3}-s_{1}\right)\left(l_{3}-\right.$ $\left.s_{1}+1\right)\left(l_{1}+l_{2}-2 s_{3}+2\right)$ ways;
- If one edge is respectively deleted in $E^{\prime \prime}$ and $E_{12} \backslash E^{\prime \prime}$, then the remaining is a unicyclic graph, we have that $\left(s_{1}-1\right)\left(s_{3}-s_{1}\right)\left(l_{1}+l_{2}-2 s_{3}+2\right)$ ways to break its cycle;
- Otherwise, one can delete one edge in each $C_{i}(i=1,2,3)$ other than in E_{12}, there are $\left(l_{3}-s_{1}+1\right)\left(l_{1}-s_{3}+1\right)\left(l_{2}-s_{3}+1\right)$ ways to break cycles.

Summing up above four cases, we can obtain $\tau(G)=\beta$.
Case 4.3. When $E_{12} \neq E_{13} \neq E_{23}$, we consider the relationships between the those sets.

Case 4.3.1. If $E_{13} \subset E_{12}$, then $E_{13} \subset E\left(C_{2}\right)$ since $E_{12} \subset E\left(C_{2}\right)$. Note that $E_{13} \subset$ $E\left(C_{3}\right)$. Thus $E_{13} \subseteq E_{23}$. Together with $\left|E_{13}\right| \geq\left|E_{23}\right|$ we have $E_{13}=E_{23}$, a contradiction.

Case 4.3.2. If $E_{13} \nsubseteq E_{12}$ and $E_{13} \cap E_{12} \neq \emptyset$, then E_{13} is compose of partial E_{12} (denoted by $\left.E^{*}\right)$ together with some edges in $E\left(C_{1}\right) \backslash E_{12}$. Meanwhile, $G\left[E_{13}\right]$ should be a path since G is a tricyclic graph. Moreover, we claim that $E_{23} \cap\left(E\left(C_{2}\right) \backslash E_{12}\right)=\emptyset$ since if not, it follows from $s_{3} \leq\left\lfloor\frac{\min \left\{l_{1}, l_{2}\right\}}{2}\right\rfloor+1$ that $\left|E\left(C_{1}\right) \backslash E_{12}\right| \geq\left|E_{12}\right|$. We notice that G is a tricyclic graph, which implies that $G\left[E_{13} \cup E_{23}\right]$ must be a path, thus $\left|E_{13}\right|>\left|E\left(C_{1}\right) \backslash E_{12}\right| \geq\left|E_{12}\right|$, which contradicts $\left|E_{12}\right| \geq\left|E_{13}\right|$. Therefore, $E_{23} \subset E_{12}$, and we further have $E_{23} \subset E_{13}$ since $E_{23} \subset E_{12} \subset E\left(C_{1}\right), E_{23} \subset E\left(C_{3}\right)$ and $E_{23} \neq E_{13}$. Thus, $E_{23} \subseteq E_{12} \cap E_{13}$. In fact,
$E_{12} \cap E_{13}=E^{*}$ since E_{13} is compose of $E^{*}\left(\subset E_{12}\right)$ and some edges in $E\left(C_{1}\right) \backslash E_{12}$. Hence, $E_{23} \subseteq E^{*}$. On the other hand, since $E^{*} \subset E_{13} \subset E\left(C_{3}\right)$ and $E^{*} \subset E_{12} \subset E\left(C_{2}\right)$, we have $E^{*} \subseteq E_{23}$. Thus, $E^{*}=E_{23}$, that is, $E_{23}=E_{12} \cap E_{13}$. Therefore, G has the form G_{16} (see Fig. 3). Now, according to the deleted edges we consider the following subcases.

- If just one edge in E_{23} is deleted, we can proceed to delete one edge from each of any two sets in $E\left(C_{1}\right) \backslash\left(E_{12} \cup E_{13}\right), E\left(C_{2}\right) \backslash E_{12}$ and $E\left(C_{3}\right) \backslash E_{13}$. Thus, we have $\left(s_{2}-1\right)\left(\left(l_{1}-s_{1}+s_{2}-s_{3}+1\right)\left(l_{2}-s_{3}+1\right)+\left(l_{1}-s_{1}+s_{2}-s_{3}+1\right)\left(l_{3}-s_{1}+1\right)+\left(l_{2}-\right.\right.$ $\left.\left.s_{3}+1\right)\left(l_{3}-s_{1}+1\right)\right)$ ways to break cycles.
- If just one edge in $E_{12} \backslash E_{23}$ (or $E_{13} \backslash E_{23}$) is deleted, then the remainder becomes a bicyclic graph with a shared edge set of $E_{13} \backslash E_{23}$ (or $E_{12} \backslash E_{23}$). Then, we can continue to delete an edge on each of the two cycles except for the common edge set in the bicyclic graph. So, there are $\left(s_{3}-s_{2}\right)\left(l_{1}+l_{2}-s_{1}+s_{2}-2 s_{3}+2\right)\left(l_{3}-s_{1}+1\right)+\left(s_{1}-\right.$ $\left.s_{2}\right)\left(l_{1}+l_{3}-2 s_{1}+s_{2}-s_{3}+2\right)\left(l_{2}-s_{3}+1\right)$ ways to break cycles.
- If two of the edge sets $E_{23}, E_{12} \backslash E_{23}$ and $E_{13} \backslash E_{23}$ are selected, and one edge is deleted in each selected edge set, then the remainder still contains a cycle. Hence, it is necessary to break the cycle again, and so, one can get $\left(s_{2}-1\right)\left(s_{3}-s_{2}\right)\left(l_{1}+l_{2}-\right.$ $\left.s_{1}+s_{2}-2 s_{3}+2\right)+\left(s_{2}-1\right)\left(s_{1}-s_{2}\right)\left(l_{1}+l_{3}-2 s_{1}+s_{2}-s_{3}+2\right)+\left(s_{3}-s_{2}\right)\left(s_{1}-s_{2}\right)\left(l_{1}+\right.$ $l_{2}+l_{3}-2 s_{1}+s_{2}-2 s_{3}+3$) ways to make G become a tree.
- If one edge in $E_{23}, E_{12} \backslash E_{23}$ and $E_{13} \backslash E_{23}$ is respectively deleted, then the remaining becomes a spanning tree of G. Therefore, there are $\left(s_{3}-s_{2}\right)\left(s_{2}-1\right)\left(s_{1}-s_{2}\right)$ ways.
- Otherwise, one can delete one edge in each $C_{i}(i=1,2,3)$ other than in $E_{23}, E_{12} \backslash E_{23}$ and $E_{13} \backslash E_{23}$, there are $\left(l_{1}-s_{1}+s_{2}-s_{3}+1\right)\left(l_{2}-s_{3}+1\right)\left(l_{3}-s_{1}+1\right)$ ways to break all cycles of G.

From the five subcases above, $\tau(G)=\gamma$.
Case 4.3.3. If $E_{13} \nsubseteq E_{12}$ and $E_{13} \cap E_{12}=\emptyset$, then $E_{23} \cap E_{12}=\emptyset$ since if not, we suppose that $E_{23} \cap E_{12}=\tilde{E} \neq \emptyset$, then $\tilde{E} \subseteq E_{13}$ because $\tilde{E} \subseteq E_{23} \subset E\left(C_{3}\right)$ and $\tilde{E} \subseteq E_{12} \subset E\left(C_{1}\right)$. Together with $\tilde{E} \subseteq E_{12}$, we therefore have $\tilde{E} \subseteq E_{13} \cap E_{12} \neq \emptyset$, a contradiction. By similar reasoning as above, we can obtain that $E_{23} \cap E_{13}=\emptyset$. Hence, $E_{13} \cap E_{23} \cap E_{12}=\emptyset$. We notice that G is a tricyclic graph and $s_{1}, s_{2}, s_{3} \geq 2$, so G has the form G_{17} (see Fig. 3). We also consider whether the deleted edges are in the common edge set. Clearly, we can only select at most two sets in E_{13}, E_{23} and E_{12} to delete edges since if not, the remaining will be disconnected. Now, according to the deleted edges we classify the following subcases.

- If just one edge is deleted in the set E_{12} (or E_{13}, or E_{23}), then the remainder becomes a bicyclic graph with the shared edge set of $E_{13} \cup E_{23}$ (or $E_{12} \cup E_{23}$, or $E_{12} \cup E_{13}$). We can continue to delete an edge on each of the two cycles except for the common edge set in the bicyclic graph. Thus, there are $\left(s_{1}-1\right)\left(l_{1}+l_{3}-2 s_{1}-s_{2}-s_{3}+4\right)\left(l_{2}-s_{2}-s_{3}+2\right)+\left(s_{2}-\right.$ 1) $\left(l_{2}+l_{3}-2 s_{2}-s_{1}-s_{3}+4\right)\left(l_{1}-s_{1}-s_{3}+2\right)+\left(s_{3}-1\right)\left(l_{1}+l_{2}-2 s_{3}-s_{1}-s_{2}+4\right)\left(l_{3}-s_{1}-s_{2}+2\right)$ ways to obtain the spanning tree of G.
- If one selects two edge sets in E_{12}, E_{13} and E_{23}, and then deletes one edge in each selected edge set. Now, the remainder graph still contains a cycle. Hence, it also need to break the cycle again, and so, we can get $\left(\left(s_{1}-1\right)\left(s_{2}-1\right)+\left(s_{1}-1\right)\left(s_{3}-1\right)+\left(s_{2}-\right.\right.$ 1) $\left.\left(s_{3}-1\right)\right)\left(l_{1}+l_{2}+l_{3}-2 s_{1}-2 s_{2}-2 s_{3}+6\right)$ ways to make G become a tree.
- Otherwise, one can delete one edge in each $C_{i}(i=1,2,3)$ other than in E_{12}, E_{13} and E_{23}, then G has $\left(l_{1}-s_{1}-s_{3}+2\right)\left(l_{2}-s_{2}-s_{3}+2\right)\left(l_{3}-s_{1}-s_{2}+2\right)$ ways to obtain a spanning tree.

To sum up above, $\tau(G)=\eta$.

3 Degree sequence $\operatorname{deg}(G)=\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$

Theorem 1. Let G be a graph of $\mathcal{G}\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$. If either $n_{0}=0$ or $n_{0} \geq 1$ and G contains no even cycle as its component, then $\operatorname{deg}(G)=\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ is determined by Laplacian spectrum of G; otherwise, G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(3^{n_{0}-k}\right.$, $\left.2^{n_{2}-3 n_{0}+3 k}, 1^{n_{1}+3 n_{0}-3 k}, 0^{k}\right)$, where $0 \leq k \leq n_{0}$.

Proof. From $\operatorname{deg}(G)$ we know that G is disjoint union of paths and cycles. Let H be a graph L-cospectral with G. Recall that the L-spectrum of a disjoint union of graphs is obtained by stringing together the spectra of the components (see [4]). So we may suppose that G^{*} (resp. H^{*}) is the maximal component with $\mu_{1}(G)=\mu_{1}\left(G^{*}\right)$ (resp. $\mu_{1}(H)=\mu_{1}\left(H^{*}\right)$). Then by Lemma 4 and Lemma 6 we have

$$
d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}\left(H^{*}\right)=\mu_{1}\left(G^{*}\right) \leq d_{1}\left(G^{*}\right)+d_{2}\left(G^{*}\right) \leq d_{1}(G)+d_{2}(G)=4,
$$

and thus, $d_{1}(H) \leq 3$. Suppose that H has degree sequence $\operatorname{deg}(H)=\left(3^{x_{3}}, 2^{x_{2}}, 1^{x_{1}}, 0^{x_{0}}\right)$. Then by Lemma 1 (i), (ii) and (v), one can obtain that

$$
\left\{\begin{array}{l}
x_{0}+x_{1}+x_{2}+x_{3}=n \\
x_{1}+2 x_{2}+3 x_{3}=n+n_{2}-n_{0} \\
x_{1}+4 x_{2}+9 x_{3}=n+3 n_{2}-n_{0}
\end{array}\right.
$$

Thus, it follows that

$$
\begin{equation*}
x_{1}=n_{1}+3 n_{0}-3 x_{0}, \quad x_{2}=n_{2}-3 n_{0}+3 x_{0}, \quad x_{3}=n_{0}-x_{0} \tag{3.1}
\end{equation*}
$$

If $n_{0}=0$, then $x_{3}=0$ since x_{3} is non-negative integer, and so $x_{1}=n_{1}$ and $x_{2}=n_{2}$. Hence, $\operatorname{deg}(G)$ is determined by Laplacian spectrum of G.

If $n_{0} \geq 1$ and G has no even cycle as its components, then from Lemma $7 \mu_{1}(G)<4$, and further we get $d_{1}(H)+1 \leq 3$ by Lemma 6 . So $d_{1}(H) \leq 2$, which implies that $x_{3}=0$, that is, $x_{0}=n_{0}, x_{1}=n_{1}$ and $x_{2}=n_{2}$. Thus, $\operatorname{deg}(G)$ is determined by Laplacian spectrum of G.

Otherwise, G maybe have a L-cospectral mate H with $\operatorname{deg}(H)=\left(3^{n_{0}-k}, 2^{n_{2}-3 n_{0}+3 k}\right.$, $\left.1^{n_{1}+3 n_{0}-3 k}, 0^{k}\right)$, where $0 \leq k \leq n_{0}$ is an integer.

According to $\mathcal{G}^{*}\left(2^{n_{2}}, 1^{n_{1}}\right)$ we know that $n_{1}=2$ if G is a tree, since otherwise, if $n_{1} \geq 4$, then $4+2 n_{2} \leq 2 m=2\left(n_{1}+n_{2}-1\right)$, which leads to $n_{1}=3$, a contradiction. Thus, $G \in \mathcal{G}^{*}\left(2^{n_{2}}, 1^{n_{1}}\right)$ is a path if G is a tree, and furthermore, it is easy to obtain the following corollary.

Corollary 2 ([5], Proposition 1). For any positive integer n, P_{n} is determined by its Laplacian spectrum.

In Theorem 1 , if $G \in \mathcal{G}^{*}\left(2^{n_{2}}, 1^{n_{1}}\right)$ and $n_{1}=0$. Then $G \cong C_{n}$.
Corollary 3 ([5], Proposition 5). For any positive integer $n(\geq 3), C_{n}$ is determined by its Laplacian spectrum.

Corollary 4 ([21], Theorem 3.1). The degree sequence of the disjoint union of paths and odd-cycles is determined by the L-spectrum.

Next, we give a counterexample to illustrate that for some graph G in $\mathcal{G}\left(2^{n_{2}}, 1^{n_{1}}, 0^{n_{0}}\right)$ is not determined by its Lapalcian spectrum if G contains even cycles. Moreover, G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(3^{n_{0}-k}, 2^{n_{2}-3 n_{0}+3 k}, 1^{n_{1}+3 n_{0}-3 k}, 0^{k}\right)$, where $0 \leq k \leq n_{0}$.

Example 1. Let G and H be two graphs shown in Fig. 4, which can be found in [21]. One can see that $\operatorname{deg}(G)=\left(2^{5}, 1^{2}, 0^{1}\right)$ and $\operatorname{deg}(H)=\left(3^{1}, 2^{2}, 1^{5}, 0^{0}\right)$ but they are L-cospectral.

Figure 4: Graphs G and H

4 Degree sequence $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$

Theorem 2. Let G be a graph of $\mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ with $n_{1}+n_{2}+n_{3}=n$. If
(1) $0 \leq n_{3} \leq 1$;
(2) $n_{3} \geq 2$ and $n_{1}=0$;
(3) $n_{3} \geq 2$ and $n_{1} \geq 1$, and G satisfies the following conditions;

- G is a tree or unicyclic graph;
- G is a c-cyclic graph with maximum number of triangles, where $c \geq 2$;

Then $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is determined by the Laplacian spectrum of G. Otherwise, if G has L-cospectral mate H, then $\operatorname{deg}(H)=\left(1^{n_{1}-k}, 2^{n_{2}+3 k}, 3^{n_{3}-3 k}, 4^{k}\right)$ where $1 \leq k \leq$ $\min \left\{n_{1},\left[\frac{n_{3}}{3}\right]\right\}$.

Proof. When $n_{3}=0$, by Theorem 1 the conclusion holds; when $n_{3}=1$, it is obvious from literature [23] (see Theorem 8).

When $n_{3} \geq 2$, let H be a graph L-cospectral with G. Then $\mu_{n-1}(H)=\mu_{n-1}(G)$. Since G is a connected graph, $\mu_{1}(G)>0$. Thus H is also a connected graph (see [6]). Therefore, it further follows from Lemma 4 that

$$
d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq d_{1}(G)+d_{2}(G)=6
$$

and hence, $d_{1}(H) \leq 5$. We now suppose that H has degree sequence $\operatorname{deg}(H)=\left(5^{x_{5}}, 4^{x_{4}}, 3^{x_{3}}\right.$, $2^{x_{2}}, 1^{x_{1}}$). Then by Lemma 1 (i), (ii) and (v),

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n \tag{4.1}\\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=n+n_{2}+2 n_{3} \\
x_{1}+4 x_{2}+9 x_{3}+16 x_{4}+25 x_{5}=n+3 n_{2}+8 n_{3}
\end{array}\right.
$$

From (4.1) one can get

$$
\begin{equation*}
x_{3}+3 x_{4}+6 x_{5}=n_{3} . \tag{4.2}
\end{equation*}
$$

For $d_{1}(H)$ we distinct three cases in the following.
Case 1. $d_{1}(H) \leq 2$.
If $d_{1}(H) \leq 2$, then $x_{3}=x_{4}=x_{5}=0$. By Eq. (4.2) we have $n_{3}=0$, it contradicts $n_{3} \geq 2$.

Case 2. $d_{1}(H)=5$.
From Lemma 4, $6=d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq q_{1}(G) \leq d_{1}(G)+d_{2}(G)=6$, it implies that G is either isomorphic to $K_{1, n-1}$ or a bipartite regular graph and $d_{1}(H)=n-1$.

If $G \cong K_{1, n-1}$, it follows from $d_{1}(G)=n-1=3$ that $n=4$ and $d_{2}(G)=d_{3}(G)=$ $d_{4}(G)=1$. So, it is contrary to $d_{2}(G)=3$ due to $n_{3} \geq 2$.

If G is a bipartite regular graph with $d_{1}(G)=3$, then $n_{2}=n_{1}=0$. And $n=6$ since $d_{1}(H)=n-1=5$. Since H is L-cospectral G and G is a regular graph, H is also a regular graph of order 6 (see Proposition 2 in [5]). So H is K_{6}. It contradicts Lemma 1 (ii).

Case 3. $3 \leq d_{1}(H) \leq 4$.
Clearly, $x_{5}=0$. From Eq. (4.1) we have

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=n \\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=n+n_{2}+2 n_{3} \\
x_{1}+4 x_{2}+9 x_{3}+16 x_{4}=n+3 n_{2}+8 n_{3}
\end{array}\right.
$$

Therefore, it follows that

$$
\begin{equation*}
x_{1}=n_{1}-k, \quad x_{2}=n_{2}+3 k, \quad x_{3}=n_{3}-3 k, \quad x_{4}=k \tag{4.3}
\end{equation*}
$$

where k is non-negative integer.
Case 3.1. When $n_{1}=0, k=0$ by Eq. (4.3). So we have $x_{1}=0, x_{2}=n_{2}, x_{3}=n_{3}$ and $x_{4}=0$, that is, $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}\right)$ is determined by the Laplacian spectrum of G, where $n_{2}+n_{3}=n$.

Case 3.2. When $n_{1} \geq 1$, we suppose that H and G have t^{\prime} and t triangles, respectively. Then by Lemma 3 we get

$$
\begin{aligned}
& 6 t-\left(n_{1}(1-2)^{3}+n_{2}(2-2)^{3}+n_{3}(3-2)^{3}\right) \\
& =6 t^{\prime}-\left(\left(n_{1}-k\right)(1-2)^{3}+\left(n_{2}+3 k\right)(2-2)^{3}+\left(n_{3}-3 k\right)(3-2)^{3}+k(4-2)^{3}\right)
\end{aligned}
$$

Thus, it follows that $t^{\prime}-t=k$.
(a) If G is a connected graph with $0 \leq c(G) \leq 1$, then by Lemma 1 (i) and (ii) we know that H has the same cyclomatic number, and further by (iii) we get $k=0$ since H L-cospectral with G implies that the two graphs have the same number of spanning tree. Hence, the degree sequence of G is determined by its Laplacian spectrum;
(b) Let $t_{\max }$ be maximum number of triangles of a c-cyclic graph, where $c \geq 2$. If G is a c-cyclic graph with $t_{\max }$, then by Lemma 1 (i) and (ii), H is also a c-cyclic graph. Combine with $t^{\prime}-t=k$ and $t=t_{\max }$ we have $k+t_{\max }=t^{\prime}$, hence, it further follows $k+t_{\max }=t^{\prime} \leq t_{\max }$, so we have $k=0$. Therefore, $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is determined by Laplacian spectrum of G;
(c) Otherwise, G maybe have a L-cospectral mate H with $\operatorname{deg}(H)=\left(1^{n_{1}-k}, 2^{n_{2}+3 k}\right.$, $\left.3^{n_{3}-3 k}, 4^{k}\right)$. Note that $n_{1}-k \geq 0$ and $n_{3}-3 k \geq 0$. Hence $1 \leq k \leq \min \left\{n_{1},\left[\frac{n_{3}}{3}\right]\right\}$, where $[x]$ is taken integer of x.

The proof is completed.

Remark 1. Under the assumption of Theorem 2, for a graph $G \in \mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$, if $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is not determined by Laplacian spectrum of G, then G has a L cospectral mate H with $\operatorname{deg}(H)=\left(1^{n_{1}-k}, 2^{n_{2}+3 k}, 3^{n_{3}-3 k}, 4^{k}\right)$ where $1 \leq k \leq \min \left\{n_{1},\left[\frac{n_{3}}{3}\right]\right\}$. Here we give a pair of L-cospectral mate G_{1} and H_{1} (see Fig. 5), which can be found in [23] (see Example 1), to illustrate that the bound of k is best possible.

From Fig. 5 we see that $\operatorname{deg}(G)=\left(3^{4}, 2^{3}, 1^{2}\right)$, by Theorem 2 one can get $1 \leq k \leq$ $\min \left\{2,\left[\frac{4}{3}\right]\right\}=1$, that is, $k=1$. Thus, $\operatorname{deg}(H)=\left(4^{1}, 3^{1}, 2^{6}, 1^{1}\right)$.

Figure 5: Graphs G_{1} and H_{1}
Corollary 5. Let T be a tree with $\Delta \leq 3$. Then the degree sequence of T is determined by its Laplacian spectrum.

A graph G is a minimal 3 -degree [23] graph if $G \in \mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ where $n_{1}+n_{2}+n_{3}=n$ and $n_{1}, n_{3}>0$ and $n_{2} \geq 0$.

Corollary 6 ([23], Theorem 1). Let G be a minimal 3-degree graph of order n. If the cyclomatic number $c(G) \leq 1$, Then the degree sequence of G is determined by it Laplacian spectrum.

A graph G if whose vertex set can be partitioned into two subsets V_{1} and V_{2} such that $d\left(v_{i}\right)=r$ for $v_{i} \in V_{1}$ and $d\left(v_{j}\right)=r+1$ for $v_{j} \in V_{2}$ is called ($r, r+1$)-almost regular graph (see [20]). From Theorem 2 one can obtain the following corollary.

Corollary 7. Let G be a connected (2,3)-almost regular graph. Then the degree sequence of G is determined by its Laplacian spectrum.

Note that bicyclic graph has 2 triangles at most. For c-cyclic graph G with $c \in\{3,4\}$, by Lemma 5 we know that the number of triangles of G is no more than $c+1$. Thus, by Theorem 2 one can obtain the following corollary.

Corollary 8. Let $G \in \mathcal{G}^{*}\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$. If G is a bicyclic graph with 2 triangles, or a tricyclic graph with 4 triangles, or 4 -cyclic graph with 5 triangles, then $\operatorname{deg}(G)=\left(3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is determined by Laplacian spectrum of G.

5 Degree sequence $\operatorname{deg}(G)=\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$

Theorem 3. Let G be a graph of $\mathcal{G}^{*}\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ with $n_{1}+n_{2}+n_{4}=n$ and $n_{4} \leq 2$. If
(1) $0 \leq n_{4} \leq 1$ and G is not isomorphic to either $R(3,4)$ or $R(3,5)$ (see Fig. 6);
(2) $n_{4}=2$ and G satisfies the following conditions;

- G is a tree or unicyclic graph;
- G is a c-cyclic graph either with $c(2 \leq c \leq 3)$ or without triangles;

Then $\operatorname{deg}(G)=\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is determined by the Laplacian spectrum of G. Otherwise, if G is a bicyclic graph with $t(G)=1$, then G has a L-cospectral mate H with $\operatorname{deg}(H)=$ $\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{3}\right)$; if G is a tricyclic graph with $t(G)=1$, then G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$, and if G is a tricyclic graph with $t(G)=2$, then G has a L cospectral mate H either with $\operatorname{deg}(H)=\left(3^{6}, 2^{n_{2}-6}, 1^{2}\right)$ or with $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$.

Proof. When $n_{4}=0$, it is trivial; when $n_{4} \geq 1$, let H be a graph L-cospectral with G. Then H is a connected graph since $\mu_{n-1}(H)=\mu_{n-1}(G)>0$ (see [6]). Furthermore, by Lemma 4 we have

$$
d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq q_{1}(G) \leq d_{1}(G)+d_{2}(G)=8
$$

hence, it follows that $d_{1}(H) \leq 7$.
Case 1. $d_{1}(H)=7$.
From Lemma 4, $8=d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq q_{1}(G) \leq d_{1}(G)+d_{2}(G)=8$, it implies that G is either isomorphic to $K_{1, n-1}$ or a bipartite regular graph and $d_{1}(H)=n-1$.

If $G \cong K_{1, n-1}$, then $G \cong K_{1,7}$ since $d_{1}(H)=n-1=7$, contrary to $d_{1}(G)=4$.
If G is a bipartite regular graph with $d_{1}(G)=4$, then $n_{2}=n_{1}=0$. Combine with $d_{1}(H)=n-1=7$ we have $n=8$. Moreover, since H is L-cospectral the regular graph G, H is also a regular graph of order 8 (see Proposition 2 in [5]). Hence $H=K_{8}$, it contradicts Lemma 1 (ii).

Case 2. $d_{1}(H) \leq 6$.
Suppose that H has the degree sequence $\operatorname{deg}(H)=\left(1^{x_{1}}, 2^{x_{2}}, 3^{x_{3}}, 4^{x_{4}}, 5^{x_{5}}, 6^{x_{6}}\right)$. Then by Lemma 1 (i), (ii) and (iii) we have

$$
\left\{\begin{array}{l}
\sum_{i=1}^{6} x_{i}=n \tag{5.1}\\
\sum_{i=1}^{6} i x_{i}=n+n_{2}+3 n_{4} \\
\sum_{i=1}^{6} i^{2} x_{i}=n+3 n_{2}+15 n_{4}
\end{array}\right.
$$

Thus, it follows from Eq. (5.1) that

$$
\begin{equation*}
x_{3}+3 x_{4}+6 x_{5}+10 x_{6}=3 n_{4} \tag{5.2}
\end{equation*}
$$

Let t and t^{\prime} be the number of triangles in G and H, respectively. Since G and H are L-cospectral, by Lemma 3 it follows that

$$
\begin{equation*}
3\left(t-t^{\prime}\right)=x_{3}-6 x_{5}-20 x_{6} \tag{5.3}
\end{equation*}
$$

Case 2.1. $n_{4}=1$.
From Eq. (5.2), it follows that either $x_{4}=1$ and $x_{3}=x_{5}=x_{6}=0$ or $x_{3}=3$ and $x_{4}=x_{5}=x_{6}=0$.

If $x_{4}=1$ and $x_{3}=x_{5}=x_{6}=0$, then by Eq. (5.1) $x_{1}=n_{1}$ and $x_{2}=n_{2}$;
If $x_{3}=3$ and $x_{4}=x_{5}=x_{6}=0$, then by Eq. (5.1) we have $x_{1}=n_{1}+1$ and $x_{2}=n_{2}-3$. Since $\operatorname{deg}(G)=\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ is graphic degree sequences, n_{1} is even. Let $G \in \mathcal{G}^{*}\left(4^{n_{4}}, 2^{n_{2}}, 1^{n_{1}}\right)$ be a c-cyclic graph. Then

$$
c=\frac{4+2 n_{2}+n_{1}}{2}-\left(n_{1}+n_{2}+1\right)+1=\frac{4-n_{1}}{2} \geq 0
$$

therefore, it follows that $n_{1} \leq 4$. We notice that n_{1} is even, so we have $n_{1}=0,2,4$, and the corresponding graph G is bicyclic graph, unicyclic graph and tree, respectively.

- When $n_{1}=2, G$ is a unicyclic graph with $\operatorname{deg}(G)=\left(4^{1}, 2^{n-3}, 1^{2}\right)$. We declare that $\operatorname{deg}(G)$ is also determined by Laplacian spectrum of G since if not, then by Lemma 1 (i) and (ii), H is also a unicyclic graph with $\operatorname{deg}(H)=\left(3^{3}, 2^{n-6}, 1^{3}\right)$. From Eq. (5.3) we have $t-t^{\prime}=1$. However, it follows from Lemma 1 (iii) that $t=t^{\prime}$, so we have $0=1$, a contradiction.
- When $n_{1}=4$, similar to the case of $n_{1}=2$, one can prove that $\operatorname{deg}(G)$ is also determined by Laplacian spectrum of G if G is a tree with $\operatorname{deg}(G)=\left(4^{1}, 2^{n-5}, 1^{4}\right)$;
- When $n_{1}=0, G$ is a bicyclic graph with $\operatorname{deg}(G)=\left(4^{1}, 2^{n-1}\right)$. From Lemma 1 (i) and (ii), H is also a bicyclic graph and $\operatorname{deg}(H)=\left(3^{3}, 2^{n-4}, 1^{1}\right)$. Clearly, $G \in \mathcal{G}^{*}\left(4^{1}, 2^{n-1}\right)$ is a ∞-graph. In fact, He and van Dam in [10] have proved that ∞-graph is determined by its Laplacian spectrum except for two graphs $R(3,4)$ and $R(3,5)$, and $R(3,4)$ and $R(3,5)$ are L-cospectral with B_{1} and B_{2}, respectively. Thus, $\operatorname{deg}(G)=\left(4^{1}, 2^{n-1}\right)$ is determined by Laplacian spectrum of G except for $\operatorname{deg}(G) \in\left\{\left(4^{1}, 2^{5}\right),\left(4^{1}, 2^{6}\right)\right\}$.

Figure 6: Graphs B_{1} and B_{2}
From the discussion above, $\operatorname{deg}(G)=\left(4^{1}, 2^{n_{2}}, 1^{n_{1}}\right)$ is determined by Laplacian spectrum of G except for that G is a bicyclic graph with $\operatorname{deg}(G) \in\left\{\left(4^{1}, 2^{5}\right),\left(4^{1}, 2^{6}\right)\right\}$.

Case 2.2. $n_{4}=2$.
It follows from Eq. (5.2) that $x_{3}+3 x_{4}+6 x_{5}+10 x_{6}=3 n_{4}=6$, and so $x_{6}=0$ and $x_{3}+3 x_{4}+6 x_{5}=6$. Thus, one can see that $0 \leq x_{5} \leq 1$.

If $x_{5}=1$, then $x_{3}=x_{4}=x_{6}=0$. From Eq. (5.1) one can obtain that $\operatorname{deg}(H)=$ $\left(5^{1}, 2^{n_{2}+1}, 1^{n_{1}-1}\right)$. By [16] we know that the degree sequence is determined by L-spectrum, it therefore contradicts $d_{1}(G)=4$ since G and H are L-cospectral.

If $x_{5}=0$, it follows from Eq. (5.1) that $x_{3}=6$ and $x_{4}=0$, or $x_{3}=3$ and $x_{4}=1$, or $x_{3}=0$ and $x_{4}=2$. Now we consider three subcases in the following.

Case (1). When $x_{3}=0$ and $x_{4}=2$, we have $x_{1}=n_{1}, x_{2}=n_{2}$. Clearly, $\operatorname{deg}(H)=$ $\operatorname{deg}(G)=\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$.

Case (2). When $x_{3}=6$ and $x_{4}=0, \operatorname{deg}(H)=\left(3^{6}, 2^{n_{2}-6}, 1^{n_{1}+2}\right)$.
If $0 \leq n_{2} \leq 5$, then $\operatorname{deg}(H)$ does not exist; otherwise, $n_{2} \geq 6$. Then by Lemma $9, t \leq 3$. Thus, it follows from Eq. (5.3) that $t^{\prime} \leq 1$.

Case (2.1). If $t^{\prime}=1$, then $t=3$. By Corollary 1 we get $n_{2}=5$ or $n_{2}=3$. Note that $x_{2}=n_{2}-6$. So, it leads to a contradiction.

Case (2.2). If $t^{\prime}=0$, then $t=2$. Let G be a c-cyclic graph with $\operatorname{deg}(G)=\left(4^{2}, 2^{n_{2}}, 1^{n_{1}}\right)$. From $c=m-n+1$ we deduce that $n_{1}=2(3-c)$, that is, $c \leq 3$. Note that $t=2$. Thus, G is just a bicyclic graph or tricyclic graph.

- Suppose that G is a tricyclic graph, then $n_{1}=0$, and so, it follows from Eq.(5.1) that $\operatorname{deg}(H)=\left(3^{6}, 2^{n_{2}-6}, 1^{2}\right)$. In fact, we find that if $G \cong G_{1}^{*}$ and $H \cong H_{1}^{*}$ (see Fig. 7), then G and H are L-cospectral. Thus, G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(3^{6}, 2^{n_{2}-6}, 1^{2}\right)$.
- Suppose that G is a bicyclic graph, then $G \in\left\{G_{3}, G_{4}, G_{5}\right\}$ by Corollary 1. By Lemma 10 we have $\tau\left(G_{3}\right)=8, \tau\left(G_{4}\right)=\tau\left(G_{5}\right)=9$, hence $\tau(G) \leq 9$. Combine with Lemma 1 as well as $t^{\prime}=0$ we see that, H is also a bicyclic graph without containing triangles. Let C_{1} and C_{2} be the first two shortest cycles of H, respectively. And let l_{i} be the length of C_{i} for $i=1,2$. Clearly, $l_{1}, l_{2} \geq 4$. Suppose that C_{1} and C_{2} share s common vertices, and $l_{1} \geq l_{2}$. Then by Lemma $10, \tau(H)=l_{1} l_{2} \geq 16$ if $s=0$; and $\tau(H)=l_{1} l_{2}-s^{2}+2 s-1$ if $1 \leq s \leq\left\lfloor\frac{l_{2}}{2}\right\rfloor+1$. For the latter one, one can see that $\tau(H)$ is the smallest when $s=\left\lfloor\frac{l_{2}}{2}\right\rfloor+1$. Note that both $f_{1}\left(l_{2}\right)=-l_{2}^{2}+\left(4 l_{1}+2\right) l_{2}-1$ and $f_{2}\left(l_{2}\right)=-l_{2}^{2}+4 l_{1} l_{2}$ are increasing functions on the interval $4 \leq l_{2} \leq l_{1}$. Thus,

$$
\begin{aligned}
\tau(H) & =l_{1} l_{2}-s^{2}+2 s-1 \\
& \geq l_{1} l_{2}-\left(\left\lfloor\frac{l_{2}}{2}\right\rfloor+1\right)^{2}+2\left(\left\lfloor\frac{l_{2}}{2}\right\rfloor+1\right)-1 \\
& =\frac{-l_{2}^{2}+\left(4 l_{1}+2\right) l_{2}-1}{4} \geq 21
\end{aligned}
$$

if l_{2} is odd, and

$$
\begin{aligned}
\tau(H) & =l_{1} l_{2}-s^{2}+2 s-1 \\
& \geq l_{1} l_{2}-\left(\left\lfloor\frac{l_{2}}{2}\right\rfloor+1\right)^{2}+2\left(\left\lfloor\frac{l_{2}}{2}\right\rfloor+1\right)-1 \\
& =\frac{-l_{2}^{2}+4 l_{1} l_{2}}{4} \geq 12
\end{aligned}
$$

otherwise. Hence, $\tau(H) \geq \min \{16,21,12\}=12$, it therefore contradicts $\tau(G) \leq 9$.

Figure 7: Graphs G_{1}^{*} and H_{1}^{*}
Case (3). When $x_{3}=3$ and $x_{4}=1, \operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{n_{1}+1}\right)$. Thus, it follows from Lemma 9 and Eq. (5.3), that $t^{\prime} \leq 2$.

Case (3.1). If $t^{\prime}=2$, then $t=3$. By Corollary 1 we have $G \in\left\{G_{1}, G_{2}\right\}$. Combine (1) with (4) in Lemma 11, we have $\tau\left(G_{1}\right)=27$ and $\tau\left(G_{2}\right)=20$, hence $\tau(G) \leq 27$. Also by Lemma 1 and $t^{\prime}=2$ we see that H is also a tricyclic graph with containing 2 triangles. Let $C_{i}(i=1,2,3)$ be the first three shortest length cycles of H, and l be the length of the third shortest cycle in H, where $l \geq 4$. And we suppose that C_{1} and C_{3} share s_{1} common vertices, C_{2} and C_{3} share s_{2} common vertices, and C_{1} and C_{2} share s_{3} common vertices. And let E_{13}, E_{23} and E_{12} denote the shared edge sets of C_{1} and C_{3}, C_{2} and C_{3}, and C_{1} and C_{2}, respectively. Noting that H contains 2 triangles, we have $0 \leq s_{i} \leq 2$ for $1 \leq i \leq 3$. Now, according to the value of s_{i} we classify the following subcases.
(a) When $s_{i} \leq 1$ for $1 \leq i \leq 3$, by Lemma 11 (1) we have $\tau(H)=l_{1} l_{2} l_{3}=9 l \geq 36$.
(b) When one of $s_{i}(1 \leq i \leq 3)$ is equal to 2 , without loss of generality, we assume that $s_{1}=2$ and $s_{2}, s_{3} \leq 1$. Then by Lemma $11(2)$ we have $\tau(H)=l_{1} l_{2} l_{3}-l_{2}\left(s_{1}-1\right)^{2}=$ $9 l-l_{2}$. Since H contains 2 triangles and $C_{i}(i=1,2,3)$ are the first three shortest cycles of H, l_{2} is equal to 3 or l possibly. If $l_{2}=3$, then $\tau(H)=9 l-3 \geq 36-3=33$; otherwise, $l_{2}=l \geq 4$, then $\tau(H)=8 l \geq 32$. Therefore, $\tau(H) \geq \min \{33,32\}=32$.
(c) When two of $s_{i}(1 \leq i \leq 3)$ are equal to 2 , we may suppose that $s_{1}=s_{2}=2$ and $s_{3} \leq 1$. Then it follows from Lemma 11 (3) that $\tau(H)=9 l-l_{1}-l_{2}$. Similarly, l_{1} and l_{2} are equal to 3 or l possibly. If one of l_{1} and l_{2} is equal to l, then $\tau(H)=$ $9 l-3-l=8 l-3 \geq 32-3=29$. Otherwise, both l_{1} and l_{2} are equal to 3 , and so $\tau(H)=9 l-6 \geq 36-6=30$. Thus, $\tau(H) \geq \min \{29,30\}=29$.
(d) When $s_{1}=s_{2}=s_{3}=2$, by Lemma 11 (4), if $E_{13}=E_{23}=E_{12}$, we have $\tau(H)=$ $\alpha=9 l-l_{1}-l_{2}-l_{3}+2=8 l-4 \geq 32-4=28$; and if $E_{13} \neq E_{23} \neq E_{12}$ and $E_{13} \cap E_{23} \cap E_{12}=\emptyset$, then $\tau(H)=\eta=9 l-l_{1}-l_{2}-l_{3}-2=8 l-8$.

Note that $\tau\left(G_{1}\right)=27$ and $\tau\left(G_{2}\right)=20$. Since H and $G \in\left\{G_{1}, G_{2}\right\}$ are L-cospectral, by Lemma 1 (iii) $\tau(H)=\tau(G) \in\{20,27\}$. If one of above (a), (b) and (c) occurs, then $\tau(H) \geq$ $\min \{29,32,36\}=29>\tau(G)$, a contradiction; otherwise, if $E_{13}=E_{23}=E_{12}$, similarly, it is also a contradiction; if $E_{13} \cap E_{23} \cap E_{12}=\emptyset$, then $\tau(H)=8 l-8$. Now we consider the graph G, when $G \cong G_{2}$, we have $\tau(G)=20$, which contradicts $\tau(H) \geq 32-8=24$ due to $l \geq 4$; when $G \cong G_{1}$, we have $\tau(H)=\tau(G)=27$, it leads to $\tau(H)=8 l-8=27$. Thus $8 l=35$, it contradicts l being an integer.

Case (3.2). If $t^{\prime}=1$, then $t=2$. By Corollary 1 we see that G is a bicyclic graph or a tricyclic graph.

- Suppose that G is a bicyclic graph, by similar method as Case (2.2), we have that if $s=0, \tau(H) \geq 12$; and if $1 \leq s \leq 2, \tau(H)=-s^{2}+2 s+3 l-1 \geq 11$. Therefore, $\tau(H) \geq \min \{12,11\}=11$. Therefore, it contradicts $\tau(G) \leq 9$.
- Suppose that G is a tricyclic graph, then $n_{1}=0$. So, it follows from Eq.(5.1) that $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$. Thus, G has a L-cospectral mate H with $\operatorname{deg}(H)=$ $\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$. In fact, we find that the degree sequence exists since if $G \cong G_{2}^{*}$ and $H \cong H_{2}^{*}$ (see Fig. 8), then G and H are L-cospectral.

Figure 8: Graphs G_{2}^{*} and H_{2}^{*}

Case (3.3). If $t^{\prime}=0$, then $t=1$. One can see that G is a k-cyclic graph for $1 \leq k \leq 3$.

- Suppose that G is a unicyclic graph, then by Lemma $1 H$ is also a unicyclic graph. Moreover, G and H have the same number of triangles since $H L$-cospectral with G implies that the two graphs have the same number of spanning tree. Thus, it is impossible since $t^{\prime}=0$ and $t=1$.
- Suppose that G is a bicyclic graph, then $n_{1}=2$, by Eq. (5.1) we have $\operatorname{deg}(H)=$ $\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{3}\right)$. In fact, we find that the degree sequence exists since if $G \cong G_{3}^{*}$ and $H \cong H_{3}^{*}$ (see Fig. 9), then G and H are L-cospectral. Thus, G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{3}\right)$.

Figure 9: Graphs G_{3}^{*} and H_{3}^{*}

- Suppose that G is a tricyclic graph, then $n_{1}=0$, it follows that $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$. Therefore, G has a L-cospectral mate H with $\operatorname{deg}(H)=\left(4^{1}, 3^{3}, 2^{n_{2}-3}, 1^{1}\right)$. In face, we have that G and H are L-cospectral if $G \cong G_{4}^{*}$ and $H \cong H_{4}^{*}$ (see Fig. 10).

Figure 10: Graphs G_{4}^{*} and H_{4}^{*}

Remark 2. In [23], Wen et al. showed that $\operatorname{deg}\left(4^{1}, 2^{n_{2}}, 1^{n_{1}}\right)$ is not determined by Lapalcian spectrum of the corresponding bicyclic graph G, where $G \in \mathcal{G}^{*}\left(4^{1}, 2^{n_{2}}, 1^{n_{1}}\right)$. As a complement, in Theorem 3 we present a precise characterization for the degree sequence with the help of [10].

6 Degree sequence $\operatorname{deg}(G)=\left(4^{n_{4}}, 3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$

Theorem 4. Let G be a graph of $\mathcal{G}^{*}\left(4^{n_{4}}, 3^{n_{3}}, 2^{n_{2}}, 1^{n_{1}}\right)$ with $c(G) \leq 1$. If $n_{4} \leq 3$, then the degree sequence of G is determined by Laplacian spectrum.

Proof. Let H be a graph L-cospectral with G. Then H is a connected graph since $\mu_{n-1}(H)=$ $\mu_{n-1}(G)>0$ (see [6]). Furthermore, by Lemma 4 we have

$$
d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq q_{1}(G) \leq d_{1}(G)+d_{2}(G)=8
$$

hence, it follows that $d_{1}(H) \leq 7$.
Case 1. $d_{1}(H)=7$.
From Lemma $4,8=d_{1}(H)+1 \leq \mu_{1}(H)=\mu_{1}(G) \leq q_{1}(G) \leq d_{1}(G)+d_{2}(G)=8$, it implies that G is either isomorphic to $K_{1, n-1}$ or a bipartite regular graph and $d_{1}(H)=n-1$.

If $G \cong K_{1, n-1}$, then $G \cong K_{1,7}$ since $d_{1}(H)=n-1=7$, contrary to $d_{1}(G)=4$.
If G is a bipartite regular graph with $d_{1}(G)=4$, then $n_{2}=n_{1}=0$. Combine with $d_{1}(H)=n-1=7$ we have $n=8$. And since H is L-cospectral G and G is a regular graph, H is also a regular graph of order 8. So $H=K_{8}$, it contradicts Lemma 1 (ii).

Case 2. $d_{1}(H) \leq 6$.
Suppose that H has the degree sequence $\operatorname{deg}(H)=\left(1^{x_{1}}, 2^{x_{2}}, 3^{x_{3}}, 4^{x_{4}}, 5^{x_{5}}, 6^{x_{6}}\right)$. Then by Lemma 1 (i), (ii) and (iii) we have

$$
\left\{\begin{array}{l}
\sum_{i=1}^{6} x_{i}=n \tag{6.1}\\
\sum_{i=1}^{6} i x_{i}=n+n_{2}+2 n_{3}+3 n_{4} \\
\sum_{i=1}^{6} i^{2} x_{i}=n+3 n_{2}+8 n_{3}+15 n_{4}
\end{array}\right.
$$

Thus, it follows from Eq. (6.1) that

$$
\begin{equation*}
x_{3}+3 x_{4}+6 x_{5}+10 x_{6}=n_{3}+3 n_{4} \tag{6.2}
\end{equation*}
$$

Let t and t^{\prime} be the number of triangles in G and H, respectively. Since G and H are L-cospectral, by Lemma 3 it follows that

$$
\begin{equation*}
t^{\prime}-t=x_{4}+4 x_{5}+10 x_{6}-n_{4} . \tag{6.3}
\end{equation*}
$$

Since $0 \leq c(G) \leq 1$, then by Lemma 1 (i) and (ii) we know that H has the same cyclomatic number, and further by (iii) we get $t^{\prime}=t$ since $H L$-cospectral with G implies that the two graphs have the same number of spanning tree. Then $n_{4}=x_{4}+4 x_{5}+10 x_{6}$. Hence, if $n_{4} \leq 3$, then $x_{5}=x_{6}=0$ and $n_{4}=x_{4}$. Together with Eq.(6.1) we have $x_{1}=n_{1}$, $x_{2}=n_{2}, x_{3}=n_{3}$. Thus, the degree sequence of G is determined by its Laplacian spectrum.

7 Erratum Remark

Wen et al. in [23] recalled two basic theorems in Section 5 (i.e., Theorems 6 and 7), but didn't label their references for a misprint, the two theorems can be found in $[2,7,11]$, we here revise the references of Theorems 6 and 7 of [23] below:

Theorem 5 ([7], Section 3, Lemma 2; [2], Theorem 3.2.2). Let M be irreducible and η be an eigenvalue of M. Then $|\eta| \leq \rho(|M|)$, with equality if and only if $M=e^{i \phi} N|M| N^{-1}$, where $\rho(|M|)$ is the spectral radius of $|M|$ and $|N|=I$.

Theorem 6 ([11], Theorem 8.1.22; [7], Section 3, Remark 2). For any irreducible nonnegative matrix M, let $R_{i}(M)$ be the sum of the i-th row of M. Then

$$
\min \left\{R_{i}(M) \mid 1 \leq i \leq n\right\} \leq \rho(M) \leq \max \left\{R_{i}(M) \mid 1 \leq i \leq n\right\}
$$

with equality iff all row sums are equal.
Acknowledgement We sincerely thank the referee for many helpful suggestions. This work is supported by National Natural Science Foundation of China (Grant No. 11961041) and Natural Science Foundation of Gansu Province, China (Grant No. 21JR11RA065).

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, North-Holland, Amsterdam (1976).
[2] R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York (1991).
[3] D. M. Cvetković, P. Rowlinson, S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl., 423, 155-171 (2007).
[4] D. M. Cvetković, P. Rowlinson, S. K. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge (2010).
[5] E. R. van Dam, W. H. Haemers, Which graphs are determined by their spectrum, Linear Algebra Appl., 373, 241-272 (2003).
[6] M. Fiedler, Algebraic connectivity of trees, Czech. Math. J., 37 (4), 660-670 (1987).
[7] F. R. Gantmacher, The Theory of Matrices, vol. II, Chelsea, New York (1959).
[8] R. Grone, R. Merris, The Laplacian spectrum of a graph, SIAM J. Discr. Math., 7, 221-229 (1994).
[9] S. G. Guo, Y. F. Wang, The Laplacian spectral radius of tricyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl., 431, 139-147 (2009).
[10] C. X. He, E. R. Van Dam, Laplacian spectral characterization of roses, Linear Algebra Appl., 536, 19-30 (2018).
[11] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York (1990).
[12] F. J. Liu, Q. X. Huang, Laplacian spectral characterization of 3-rose graphs, Linear Algebra Appl., 439, 2914-2920 (2013).
[13] M. Liu, Some graphs determined by their (signless) Laplacian spectra, Czechoslovak Math. J., 62, 1117-1134 (2012).
[14] M. Liu, Y. Zhu, H. Shan, K. Das, The spectral characterization of butterfly-like graphs, Linear Algebra Appl., 513, 55-68 (2017).
[15] M. Liu, B. Liu, F. Wei, Graphs determined by its (signless) Laplacian spectra, Electron. J. Linear Algebra, 22, 112-124 (2011).
[16] M. Liu, Y. Zhu, H. Shan, K. Ch. Das, The spectral characterization of butterflylike graphs, Linear Algebra and its Applications, 513, 55-68 (2017).
[17] M. Liu, Y. Yuan, L. You, Z. Chen, Which cospectral graphs have same degree sequences, Discrete Mathematics, 341, 2969-2976 (2018).
[18] C. S. Oliveira, N. M. M. de Abreu, S. Jurkiewicz, The characteristic polynomial of the Laplacian of graphs in (a, b)-linear classes, Linear Algebra and its Applications, 356(1-3), 113-121 (2002).
[19] J. F. Wang, Q. X. Huang, F. Belardo, On the spectral characterizations of 3-rose graphs, Util. Math., 91, 33-46 (2013).
[20] J. F. Wang, Q. X. Huang, F. Belardo, E. M. Li Marzi, A note on the spectral characterization of dumbbell graphs, Linear Algebra and its Appl., 437, 1707-1714 (2009).
[21] J. F. Wang, S. K. Simić, Q. X. Huang, F. Belardo, E. M. Li Marzi, Laplacian spectral characterization of disjoint union of paths and cycles, Linear and Multilinear Algebra, 59, 531-539 (2011).
[22] F. Wen, Q. X. Huang, X. Y. Huang, F. J. Liu, The spectral characterization of wind-wheel graphs, Indian Journal of Pure and Applied Mathematics, 46, 613-631 (2015).
[23] F. Wen, J. Yan, Q. X. Huang, X. Y. Huang, On the degree sequence determined by the Laplacian spectrum of the corresponding graph, Bull. Math. Soc. Sci. Math. Roumanie, 63 (111) (1), 67-81 (2020).
[24] G. Zhang, M. Liu, H. Shan, Which Q-cospectral graphs have same degree sequences, Linear Algebra Appl., 520, 274-285 (2017).

Received: 23.04.2022
Revised: 26.06.2022
Accepted: 28.06.2022
${ }^{(1)}$ Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China E-mail: wangrr2028@163.com
${ }^{(2)}$ Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China E-mail: wenfei@lzjtu.edu.cn
${ }^{(3)}$ Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China E-mail: yuanmengyue0106@163.com

