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On a conjecture related to integer-valued polynomials
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Abstract

Using the following 4 F5 transformation formula
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which can be proved by Zeilberger’s algorithm, we confirm some special cases of a
recent conjecture of Z.-W. Sun on integer-valued polynomials.
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1 Introduction

Recall that a polynomial P(z) € Q[z] is called integer-valued, if P(x) € Z for all z € Z.
During the past few years, integer-valued polynomials have been investigated by several
authors (see, for example, [3, 6, 13]). Recently, Z.-W. Sun [14, Conjectures 35(i)] proposed

the following conjecture.

Conjecture 1 (Z.-W. Sun). Let l,m,n be positive integers and € = 1. Then the polyno-
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18 integer-valued.

By the Chu-Vandermonde summation formula, we have

J‘io <_xj_ 1> (kij) B <_k;1> = (-1~

Thus, by [9, Lemmas 2.3 and 2.4], we see that Conjecture 1 is true for m = 1. In this note,
we shall confirm Conjecture 1 for m = 2.
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Theorem 1. Let I and n be positive integers and € = +1. Then the polynomial

is integer-valued.

We shall also prove the following result, which confirms the I = 1 cases of [14, Conjectures
35(ii)].

Theorem 2. Let n be a positive integer. Then the polynomial
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1s integer-valued.

2 Proof of Theorem 1

We first require the following 4F3 transformation formula.

Lemma 1. Let n be a non-negative integer. Then
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Proof. Denote the left-hand side or the right-hand side of (2.1) by S, (z). Applying Zeil-
berger’s algorithm (see [1, 10]), we obtain

(n+2)%S,42(z) — (2n + 3)(n? + 222 + 3n + 22 + 3)Spy1(z) + (3n? +3n +1)S,(z) = 0.

That is to say, both sides of (2.1) satisfy the same recurrence relation of order 2. Moreover,
the two sides of (2.1) are equal for n = 0,1. This completes the proof. 0

Using Zeilberger’s algorithm, Z.-W. Sun [11, Eq. (3.1)] found the following identity:
e (—12\2 =172\ N 2k\%( &k -
16 Z( . ) (nk) => A PR [C (2.2)
k=0 k=0
and he [12, Eq. (3.1)] gave the following formula:
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Here we point out that, for z = —1/2 and —3/4, Eq. (2.1) gives identities different from
(2.2) and (2.3).
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In [2], Chen and the author introduced the multi-variable Schmidt polynomials
"L n+k\ (2K
Sn(l‘o,...,xn)—kzzo< U >(k).’17;C

In order to prove Theorem 1, we also need the following result, which is a special case of
the last congruence in [2, Section 4].

Lemma 2. Let [ and n be positive integers and € = +1. Then all the coefficients in

n—1

Z Ek(Qk + 1)2l_15k(l‘0, R ,xk).
k=0

are multiples of n.

Proof of Theorem 1. For any non-negative integer k, define

«= () (a)

Then the identity (2.1) may be rewritten as

2065 () () o

k=
It is easy to see that zg, ..., z, are all integers on condition that x is an integer. By Eq. (2.4)
and Lemma 2, we see that the polynomial (1.1) is integer-valued. ]

3 Proof of Theorem 2

We need the following result, which can be easily proved by induction on n. See also [2,
Eq. (2.4)].

Lemma 3. Let n and k be non-negative integers with k < n — 1. Then

% (2m+1) (”ZZ k) <2kk> - "(k v 1> <n : k> .

m=k

Proof of Theorem 2. Using the identities (2.1) and (3.1), we have
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It follows that the expression (1.2) can be written as

ST SR ) e

Since kil (215) = (2kk) - (k2_k1) is clearly an integer (the n-th Catalan number), we conclude

that the right-hand side of (3.2) is also an integer whenever x is an integer. This proves
the theorem. 0

>
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4 Concluding remarks

Z.-W. Sun [14, Conjecture 35(ii)] conjectured that, for all positive integers [ and n, the

polynomial
Eo/n N2/ g 2
w7 ()
e () (2

is integer-valued. Here (21 — 1)!l = (20 — 1)(20 —3)---3- 1.
We believe that the following (stronger) result is true.

n—1

(21 — 1)
n2

k=0

Conjecture 2. Letl and n be positive integers and k a non-negative integer with k < n—1.
Then

(21 — 1! S (2m + 1)%-1 (m; k) (2:>2 =0 (mod n?). (4.1)

m=k

Our proof of Theorem 2 implies that the above conjecture is true for [ = 1. In view of
(2.1), Sun’s conjecture follows from (4.1) too.

Recently, g-analogues of congruences have been studied by many authors. See [4, 5, 7,
8, 15] and references therein. For [ = 1, we have a g-analogue of (4.1) as follows:

:g[Zm +1] {m;]; k] [2:} 2q4k+1>m —0 (mod [n]?), 42)

where [n] = 1+¢q+---+¢" ! is the g-integer and [}] = H?Zl(l —q"*+9) /(1 - ¢7) denotes
the g-binomial coefficient. The proof of (4.2) is similar to that of Theorem 2. However, we

cannot find any g-analogue of (4.1) for [ > 1.
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