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Abstract

Using the following 4F3 transformation formula
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which can be proved by Zeilberger’s algorithm, we confirm some special cases of a
recent conjecture of Z.-W. Sun on integer-valued polynomials.
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1 Introduction

Recall that a polynomial P (x) ∈ Q[x] is called integer-valued, if P (x) ∈ Z for all x ∈ Z.
During the past few years, integer-valued polynomials have been investigated by several
authors (see, for example, [3, 6, 13]). Recently, Z.-W. Sun [14, Conjectures 35(i)] proposed
the following conjecture.

Conjecture 1 (Z.-W. Sun). Let l,m, n be positive integers and ε = ±1. Then the polyno-
mial
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is integer-valued.

By the Chu-Vandermonde summation formula, we have
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Thus, by [9, Lemmas 2.3 and 2.4], we see that Conjecture 1 is true for m = 1. In this note,
we shall confirm Conjecture 1 for m = 2.
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Theorem 1. Let l and n be positive integers and ε = ±1. Then the polynomial
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(1.1)

is integer-valued.

We shall also prove the following result, which confirms the l = 1 cases of [14, Conjectures
35(ii)].

Theorem 2. Let n be a positive integer. Then the polynomial
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is integer-valued.

2 Proof of Theorem 1

We first require the following 4F3 transformation formula.

Lemma 1. Let n be a non-negative integer. Then
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Proof. Denote the left-hand side or the right-hand side of (2.1) by Sn(x). Applying Zeil-
berger’s algorithm (see [1, 10]), we obtain

(n+ 2)3Sn+2(x)− (2n+ 3)(n2 + 2x2 + 3n+ 2x+ 3)Sn+1(x) + (3n2 + 3n+ 1)Sn(x) = 0.

That is to say, both sides of (2.1) satisfy the same recurrence relation of order 2. Moreover,
the two sides of (2.1) are equal for n = 0, 1. This completes the proof.

Using Zeilberger’s algorithm, Z.-W. Sun [11, Eq. (3.1)] found the following identity:
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and he [12, Eq. (3.1)] gave the following formula:
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Here we point out that, for x = −1/2 and −3/4, Eq. (2.1) gives identities different from
(2.2) and (2.3).
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In [2], Chen and the author introduced the multi-variable Schmidt polynomials

Sn(x0, . . . , xn) =
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In order to prove Theorem 1, we also need the following result, which is a special case of
the last congruence in [2, Section 4].

Lemma 2. Let l and n be positive integers and ε = ±1. Then all the coefficients in
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are multiples of n.

Proof of Theorem 1. For any non-negative integer k, define
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Then the identity (2.1) may be rewritten as
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It is easy to see that x0, . . . , xn are all integers on condition that x is an integer. By Eq. (2.4)
and Lemma 2, we see that the polynomial (1.1) is integer-valued.

3 Proof of Theorem 2

We need the following result, which can be easily proved by induction on n. See also [2,
Eq. (2.4)].

Lemma 3. Let n and k be non-negative integers with k ⩽ n− 1. Then
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Proof of Theorem 2. Using the identities (2.1) and (3.1), we have
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It follows that the expression (1.2) can be written as
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Since 1
k+1
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−
(
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is clearly an integer (the n-th Catalan number), we conclude

that the right-hand side of (3.2) is also an integer whenever x is an integer. This proves
the theorem.

4 Concluding remarks

Z.-W. Sun [14, Conjecture 35(ii)] conjectured that, for all positive integers l and n, the
polynomial
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is integer-valued. Here (2l − 1)!! = (2l − 1)(2l − 3) · · · 3 · 1.
We believe that the following (stronger) result is true.

Conjecture 2. Let l and n be positive integers and k a non-negative integer with k ⩽ n−1.
Then
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≡ 0 (mod n2). (4.1)

Our proof of Theorem 2 implies that the above conjecture is true for l = 1. In view of
(2.1), Sun’s conjecture follows from (4.1) too.

Recently, q-analogues of congruences have been studied by many authors. See [4, 5, 7,
8, 15] and references therein. For l = 1, we have a q-analogue of (4.1) as follows:
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where [n] = 1+ q+ · · ·+ qn−1 is the q-integer and
[
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the q-binomial coefficient. The proof of (4.2) is similar to that of Theorem 2. However, we
cannot find any q-analogue of (4.1) for l > 1.
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