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Abstract

Let (g, b, J+, J−) be the bihermitian structure corresponding to a generalized Kähler structure.

We find natural integrability conditions, in terms of the eigendistributions of J+J−+J−J+ , under

which db = 0 .
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Introduction

A generalized almost complex structure on a smooth (connected) manifold is given by a vector subbundle

L ⊂
`

TM⊕T ∗M
´C

such that L∩L = {0} and which is maximally isotropic with respect to the canonical

inner product

<X + α, Y + β >= 1
2

`

α(Y ) + β(X)
´

.

If E = πTM (L) is a bundle, where πTM : TM ⊕ T ∗M → TM is the projection, then there exists a

unique complex two-form ε ∈ Γ(Λ2E∗) such that L = L(E, ε) , where

L(E, ε) = {X + α |X ∈ E, α|E = ε(X)} .

Furthermore, by [4] , to which we refer for all of the facts on generalized complex structures recalled

here, the condition L ∩ L = {0} is equivalent to E + E = T CM and Im
`

ε|E∩E

´

is non-degenerate.

A generalized almost complex structure L is integrable if its space of sections is closed under the

Courant bracket, defined by

[X + α, Y + β] = [X, Y ] + LXβ − LY α − 1
2

d(ιXβ − ιY α) ,

for any X + α, Y + β ∈ Γ(L) .

A generalized complex structure is an integrable generalized almost complex structure. Obviously,

any generalized complex structure corresponds to a linear complex structure on TM ⊕ T ∗M whose

eigenbundle, corresponding to i , is isotropic, with respect to the canonical inner product, and its space

of sections is closed under the Courant bracket.

A generalized almost complex structure of the form L = L(E, ε) is integrable if and only if the
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space of sections of E is closed under the (Lie) bracket and dε(X, Y, Z) = 0 , for any X, Y, Z ∈ E.

A particular feature of Generalized Complex Geometry is that imposing Hermitian compatibility to

a generalized almost complex structure and a Riemannian metric on TM ⊕ T ∗M , compatible with the

canonical inner product, forces the manifold to admit a second generalized almost complex structure,

commuting with the first one. One arrives to the notion of generalized Kähler structure, as a couple of

commuting generalized complex structures J1 and J2 such that J1J2 is negative definite; furthermore,

in [4] it is explained the correspondence between generalized Kähler structures and a special type of

bihermitian structures which appeared in Theoretical Physics, over twenty years ago [3] .

More precisely, any generalized almost Kähler structure on M corresponds to a quadruple (g, b, J+,

J−) , where g is a Riemannian metric, b is a two-form and J± are almost Hermitian structures on

(M, g) . Furthermore, the corresponding generalized almost Kähler structure is integrable if and only

if J± are integrable and parallel with respect to ∇±, where ∇± = ∇± 1
2
g−1h , with ∇ the Levi-Civita

connection of g and h = db (equivalently, J± are integrable and dc
±ω± = ∓h , where ω± are the Kähler

forms of J±).

Classification results for compact bihermitian manifolds were given, mainly in dimension 4 , in

several papers (see, for example, [1], [2] ).

In higher dimensions, a natural case to consider is when J+ and J− are admissible for an almost

quaternionic structure. This condition was, essentially, considered by physicists who have shown that

it holds if and only if the bihermitian structure is part of a hyperkähler one [7, Theorem 1] (see

Theorem 1.1 , below).

By combining this fact with results of [9] and [8] , we study the ‘eigendistributions’ of the operator

J+J− + J−J+ . Thus, we obtain natural integrability conditions under which db = 0 (Theorem 2.3 ,

Corollary 2.4 ).

1 The almost quaternionic generalized Kähler manifolds are hyperkähler

A bundle of associative algebras is a vector bundle whose typical fibre is an associative algebra A and

whose structural group is the group of automorphisms of A .

An almost quaternionic structure on M is a morphism of bundles of associative algebras σ : A →

End(TM) , where the typical fibre of A is H . Then, σ(ImA) is an oriented Riemannian vector bundle

of rank 3 and the (local) sections of its sphere bundle are the admissible almost complex structures of

σ (see [6] ).

The following result reformulates [7, Theorem 1] . For the reader’s convenience, we supply a proof.

Theorem 1.1. Let (M, L1, L2) be a generalized almost Kähler manifold of dimension at least eight

and let (g, b, J+, J−) be the corresponding almost bihermititan structure. Suppose that J+ and J− are

admissible almost complex structures of an almost quaternionic structure on M .

Then the following assertions are equivalent:

(i) (M, L1, L2) is generalized Kähler.

(ii) (M, g, J±) are Kähler manifolds.

Furthermore, if (i) or (ii) holds and J+ 6= ±J− then the almost quaternionic structure is hy-

perkähler, with respect to (M, g) .

Proof: As (ii)=⇒(i) is trivial, it is sufficient to prove that (i)=⇒(ii) .

By hypothesis, there exists a : M → [−1, 1] such that J+J− + J−J+ = −2a on M . If J+ = ±J−

there is nothing to be proved. Hence, we may suppose that a−1
`

(−1, 1)
´

6= ∅ .

Moreover, as we have to prove that (M, g, J±) are Kähler and, consequently, a is constant, we may

assume a(M) ⊆ (−1, 1) .
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Then L1 = L(T CM, ε+) and L2 = L(T CM, ε−) , where ε± are closed complex two-forms on M .

From [4, (6.4) and (6.5)] , it quickly follows that

(Im ε±)(J+ ∓ J−) = 2g ,

(Re ε±)(J+ ∓ J−) = b(J+ ∓ J−) + g(J+ ± J−) .
(1.1)

On multiplying, to the right, both relations of (1.1) by J+ ∓ J− we obtain

(−2 ± 2a)(Im ε±) = 2g(J+ ∓ J−) ,

(−2 ± 2a)(Re ε±) = (−2 ± 2a)b ∓ g(J+J− − J−J+)

and, consequently, (a − 1)Re ε+ − (a + 1)Re ε− = −2b .

Therefore

d

»

1

1 ± a
g(J+ ± J−)

–

= 0 . (1.2)

Also, as, up to a B-field transformation, we may suppose Re ε− = 0 , we deduce that the two-form
1

a−1
b is closed; equivalently,

db =
1

a − 1
da ∧ b . (1.3)

Note that, the condition ∇±J± = 0 is equivalent to

g
`

(∇XJ±)(Y ), Z
´

= ∓ 1
2

ˆ

(db)(X, J±Y, Z) + (db)(X, Y, J±Z)
˜

, (1.4)

for any X, Y, Z ∈ TM .

From (1.3) and (1.4) we obtain

g
`

(∇XJ±)(Y ), Z
´

= ±
1

2(1 − a)

`

da ∧ b
´`

X ∧ J±Y ∧ Z + X ∧ Y ∧ J±Z
´

, (1.5)

for any X, Y, Z ∈ TM .

Obviously,

K± =
1

p

2(1 ± a)

`

J+ ± J−

´

.

are anti-commuting almost Hermitian structures on (M, g) . Furthermore, (1.5) gives

g
`

(∇XK±)(Y ), Z
´

= ∓
1

2(1 ± a)
X(a) g(K±Y, Z)

+
1

2(1 − a)

„

1 − a

1 + a

«± 1
2

`

da ∧ b
´`

X ∧ K∓Y ∧ Z + X ∧ Y ∧ K∓Z
´

,

(1.6)

for any X, Y, Z ∈ TM .

On the other hand, by (1.2) , the almost Hermitian manifolds
`

M, e2f±g, K±

´

are (1, 2)-symplectic,

where f± = − 1
4

log 2(1 ± a) . A straightforward calculation shows that this is equivalent to

g
`

(∇K±XK±)(Y ), Z
´

− g
`

(∇XK±)(Y ), K±Z
´

=

±
1

2(1 ± a)

ˆ

(K±Y )(a) g(K±X, Z) − (K±Z)(a) g(K±X, Y )

+ Y (a) g(X, Z) − Z(a) g(X, Y )
˜

,

(1.7)
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for any X, Y, Z ∈ TM .

Now, (1.6) and (1.7) imply

(K±X)(a) g(K±Y, Z) + (K±Y )(a) g(K±X, Z) − (K±Z)(a) g(K±X, Y )

−X(a) g(Y, Z) + Y (a) g(X, Z) − Z(a) g(X, Y ) =

±

„

1 − a

1 + a

«− 1
2

`

da ∧ b
´`

K±X ∧ K∓Y ∧ Z + K±X ∧ Y ∧ K∓Z

− X ∧ K∓Y ∧ K±Z − X ∧ Y ∧ K∓K±Z
´

,

(1.8)

for any X, Y, Z ∈ TM .

In (1.8) , if from the first relation we subtract the second one, with the roles of X and Y interchanged,

then we obtain

(K+X)(a) g(K+Y, Z) + (K+Y )(a) g(K+X, Z) − (K+Z)(a) g(K+X, Y )

+ (K−X)(a) g(K−Y, Z) + (K−Y )(a) g(K−X, Z) + (K−Z)(a) g(K−X, Y )

− 2Z(a) g(X, Y ) = 2

„

1 − a

1 + a

«− 1
2

`

da ∧ b
´`

K+X ∧ K−Y ∧ Z) ,

(1.9)

for any X, Y, Z ∈ TM .

From (1.9) , with Z = K+X, it quickly follows that gradga is zero on the orthogonal complement

of each quaternionic line. As dim M ≥ 8 , we obtain that a is constant. Together with (1.6) , this gives

that K± generate a hyperkähler structure on (M, g) , whilst, together with (1.3) , this implies db = 0 .

The proof is complete.

Remark 1.2. In dimension four, the hypothesis of Theorem 1.1 is equivalent to the condition that

J+ and J− induce the same orientation on M , whilst if J+ and J− induce different orientations on M

then, up to a unique B-field transformation, M is locally given by a product of two Kähler manifolds

(consequence of [8, Corollary 5.7] ). Furthermore, there exist four-dimensional generalized Kähler

manifolds with J+ and J− inducing the same orientation and which are not given by a hyperkähler

structure (see [5] ).

The next result follows quickly from (1.3) and (1.9) .

Corollary 1.3. Let (M, L1, L2) be a four-dimensional generalized Kähler manifold with J+ , J− in-

ducing the same orientation on M and linearly independent, at each point.

Then, up to a unique B-field transformation, the following relations hold:

db = −
1

1 − a
da ∧ b .

∗(da ∧ b) =
1

2(1 + a)
[J+, J−](da) ,

(1.10)

where ∗ is the Hodge star operator of (M, g) and the function a : M → (−1, 1) is characterised by

J+J− + J−J+ = −2a .

We end this section by showing how equations (1.10) can be slightly simplified.

Remark 1.4. Let (M, L1, L2) be a four-dimensional generalized Kähler manifold with J+ , J− inducing

the same orientation on M and linearly independent, at each point.

With the same notations as in Theorem 1.1, let K = K+K− , k =
“

1+a
1−a

”

1
2

g and u = log(1 − a).

Then (1.10) is equivalent to

db = du ∧ b = − ∗kKdu . (1.11)
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If du is nowhere zero, then the second equality of (1.11) is equivalent to

b = cvE + vF + du ∧ α ,

where c is a function, E is generated by {grad u, K(grad u)}, F = E
⊥, α is a section of F

∗, and vE ,

vF are the volume forms of E , F , respectively.

2 Factorisation results for generalized Kähler manifolds

Let (M, L1, L2) be a generalized Kähler manifold and let (g, b, J+, J−) be the corresponding bihermitian

structure. For any a ∈ [−1, 1] , we (pointwisely) denote by H
a the eigenspace of J+J− + J−J+

corresponding to −2a ; also, we denote H
± = H

±1 and V =
`

H
+⊕H

−
´⊥

. Then, at each point of M ,

we have that H
a are preserved by J± and there exist (finite) orthogonal decompositions TM =

L

a H
a

and V =
L

|a|<1 H
a.

Corollary 2.1. Let N be a complex submanifold of (M, J±) , of complex dimension at least four, en-

dowed with a function a : N → (−1, 1) such that TxN ⊆ H
a(x)
x , (x ∈ N) .

Then a is constant and N is endowed with a natural hyperkähler structure whose underlying Rie-

mannian metric is g|N and for which J+|N and J−|N are admissible complex structures.

Proof: As, obviously, (g, b, J+, J−) induces a generalized Kähler structure on N , this follows quickly

from Theorem 1.1 .

From [9, Lemma 2.3] it follows that in an open neighbourhood U of each point of a dense open subset

of M there exist (smooth) functions aj : M → [−1, 1] , (j = 1, . . . , r) , such that H
aj are distributions

on U and TM =
L

j H
aj ; we call the H

aj the (local) eigendistributions of J+J−+J−J+ . Furthermore,

if a is a function on U such that, at each point, −2a is an eigenvalue of J+J− + J−J+ then there exists

an open subset of U on which a = aj , for some j ; thus, if we assume real-analyticity then a = aj on

U .

We point out the following facts:

• The functions aj are constant along the integrable manifolds, of dimensions at least eight, of

H
aj , (j = 1, . . . , r) ; this is a consequence of Corollary 2.1 .

• If J+ ± J− are invertible then the holomorphic diffeomorphisms of (M, L1, L2) preserve each

H
aj , (j = 1, . . . , r) ; this is a consequence of [8, Corollary 6.7] .

Remark 2.2. Let (M, L1, L2) be a generalized Kähler manifold with db = 0 . Then (M, g, J±) are

Kähler and there exists a nonempty finite subset A of [−1, 1] such that, for any a ∈ A , we have that

H
a is a parallel foliation which is holomorphic with respect to both J+ and J− . Therefore (g, J±)

induce Kähler structures on the leaves of H
a and, if a 6= ±1 , these are admissible with respect to

natural hyperkähler structures. Furthermore, there exist orthogonal decompositions TM =
L

a∈A H
a

and V =
L

a∈A\{±1} H
a.

If the cardinal of A \ {±1} is at least two then the leaves of
L

a∈A\{±1} H
a are naturally endowed

with two distinct hyperkähler structures with respect to which J+ and J− define admissible complex

structures, respectively.

Furthermore, if J+ + J− (or J+ − J−) is invertible then as, locally, M is the product of a Kähler

manifold and hyperkähler manifolds, its holomorphic Poisson structure is the pull-back of the product

of the holomorphic symplectic structures of the hyperkähler factors.

Next, we prove the following.
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Theorem 2.3. Let (M, L1, L2) be a generalized Kähler manifold with J+ + J− (or J+ − J−) invertible

and for which the eigendistributions of (J+J− + J−J+)|(H +⊕H −)⊥ have dimensions at least eight.

Then the following assertions are equivalent:

(i) db = 0 .

(ii) The eigendistributions of J+J− + J−J+ and their orthogonal complements are integrable.

Proof: The implication (i)=⇒(ii) is an immediate consequence of Remark 2.2 .

Assume that (ii) holds. From [8, Corollary 6.3] it follows that we may suppose that, also, J+ − J−

is invertible.

Then, locally, outside a set with empty interior there exists a finite set A of functions a : M →

(−1, 1) such that H
a are distributions and TM =

L

a∈A H
a.

Also, L1 = L(T CM, ε+) and L2 = L(T CM, ε−) , where ε± are closed complex two-forms on M .

By Theorem 1.1 , we have that (i) holds if and only if db(X, Y, Z) = 0 , for any X ∈ H
a and

Y, Z ∈
L

a′∈A\{a} H
a′

, (a ∈ A) .

As H
a, (a ∈ A) , are invariant under B-field transformations, we may assume Re ε− = 0 ; equiva-

lently, b = −g(J+ − J−)(J+ + J−)−1 . Together with the fact that H
a, (a ∈ A) , and their orthogonal

complements are holomorphic foliations, with respect to J+ and J− , this gives that (i) holds if and

only if H
a are Riemannian foliations, (a ∈ A) .

Now, note that we, also, have

Re ε+ = b + g(J+ + J−)(J+ − J−)−1 = g
ˆ

(J+ + J−)(J+ − J−)−1 − (J+ − J−)(J+ + J−)−1˜

.

As L1 is integrable, Re ε+ is closed and, consequently, H
a are Riemannian foliations, (a ∈ A) .

The proof is complete.

We end with the following result.

Corollary 2.4. Let (M, L1, L2) be a generalized Kähler manifold for which the eigendistributions of

(J+J− + J−J+)|(H +⊕H −)⊥ have dimensions at least eight.

Then the following assertions are equivalent:

(i) db = 0 .

(ii) H
± and the sum of any two eigendistributions of J+J− + J−J+ are integrable.

Proof: The implication (i)=⇒(ii) is trivial.

If (ii) holds then H
+ ⊕ H

− is integrable. Hence, by [8, Theorem 6.10] , we may assume H
+ =

0 = H
−. The proof follows from Theorem 2.3 .
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