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Abstract

We show that all harmonic morphisms from 3-dimensional Minkowski space with val-

ues in a surface have a Weierstrass representation involving the complex numbers or the

hyperbolic numbers depending on the signature of the codomain. We deduce that there is

a non-trivial globally defined submersive harmonic morphism from Minkowski 3-space to

a surface, in contrast to the Riemannian case. We show that a degenerate harmonic mor-

phism on a Minkowski space is precisely a null real-valued solution to the wave equation,

and we find all such.
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1 Introduction

A C2 map ϕ : (M, g) → (N, h) between Riemannian manifolds is called a harmonic morphism if,

for every harmonic function f : V → R from an open subset V of N with ϕ−1(V ) non-empty, the

composition f ◦ ϕ : ϕ−1(V ) → R is harmonic. It is a fundamental result of Fuglede and Ishihara

[7, 10], that ϕ is a harmonic morphism if and only if it is both a harmonic map and horizontally weakly

conformal. If we allow the metrics g and h to be indefinite, the situation becomes more subtle due to

the three possible types of tangent vector that can occur: spacelike, timelike or null. However, provided

sufficient care is taken over the definitions, the same characterization applies [8, 4].

In this more general setting, we say that a C1-map ϕ : (M, g) → (N, h) between semi-Riemannian

manifolds is horizontally (weakly) conformal or semiconformal at x ∈ M with square dilation Λ(x) if

g
`

dϕ∗

x(U), dϕ∗

x(V )
´

= Λ(x) h(U, V ) (U, V ∈ Tϕ(x)N) (1.1)

for some Λ(x) ∈ R, where dϕ∗
x : Tϕ(x)N → TxM denotes the adjoint of dϕx. If ϕ is horizontally weakly

conformal at every point, then we shall simply say that ϕ is horizontally weakly conformal. Note that,

contrary to the Riemannian case, the function Λ : M → R can take on nonpositive values. In fact,

recall that a subspace W of TxM is called degenerate if there exists a non-zero vector v ∈ W such that

g(v, w) = 0 for all w ∈ W , and null if g(v, w) = 0 for all v, w ∈ W ; then we have three types of points,

as follows (see [4, Proposition 14.5.4]).
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Proposition 1.1. Let ϕ : (M, g) → (N, h) be a C1 horizontally weakly conformal map. Then, for each

x ∈ M , precisely one of the following holds:

(i) dϕx = 0, thus dϕ has rank 0 at x;

(ii) Λ(x) 6= 0. Then ϕ is submersive at x and dϕx maps the horizontal space Hx := (ker dϕx)⊥

conformally onto Tϕ(x)N with square conformality factor Λ(x), i.e., h(dϕx(X), dϕx(Y )) = Λ(x) g(X, Y )

(X, Y ∈ Hx), we call x a regular point of ϕ;

(iii) Λ(x) = 0 but dϕx 6= 0. Then the vertical space Vx := ker dϕx is degenerate and Hx ⊆ Vx;

equivalently, Hx is null and non-zero. We say that x is a degenerate point of ϕ, or that ϕ is degenerate

at x.

We call ϕ non-degenerate if it has no degenerate points, i.e., all points are of type (i) or (ii) above;

this is always the case when the domain is Riemannian. Points that are not regular, i.e. points of type

(i) or (iii), are called critical points.

Recall that a C2 map ϕ : (M, g) → (N, h) is harmonic if it satisfies the harmonicity equation

τ(ϕ) = 0 where τ(ϕ) = Tr∇dϕ is the tension field of ϕ, see [4, Chapters 3 and 14] for an account

adapted to our needs. When the domain is of Riemannian signature, the harmonicity equation is

elliptic; in particular, for maps between Euclidean spaces, it is Laplace’s equation. On the other hand,

when (M, g) is of Lorentzian signature, the harmonicity equation is hyperbolic. In particular, recall that

m-dimensional Minkowski space M
m = R

m
1 is defined to be R

m endowed with the metric of signature

(1, m − 1) given in standard coordinates (x1, x2, . . . , xm) ∈ R
m by g = −dx 2

1 + dx 2
2 + . . . dx 2

m . Then

a map ϕ : M
m → R or C is harmonic if and only if it satisfies the wave equation (1.2a) below.

Harmonic morphisms to surfaces are particularly nice; from the definition it is clear that the

composition of such a map with a conformal or weakly conformal map of surfaces is again a harmonic

morphism. In particular, the concept of harmonic morphism depends only on the conformal class of

the metric on the surface; hence, when it is of Riemannian signature and oriented, we can take it to be

a Riemann surface. A map ϕ : M
m → N2 from Minkowski m-space to a Riemann surface is a harmonic

morphism if and only if, in any local complex coordinate on N2, it satisfies

8

>

>

>

<

>

>

>

:

(a) 2ϕ ≡ − ∂2ϕ

∂x 2
1

+

m
X

i=2

∂2ϕ

∂x 2
i

= 0,

(b) 〈grad ϕ , grad ϕ〉1 ≡ −
„

∂ϕ

∂x1

«2

+
m

X

i=2

„

∂ϕ

∂xi

«2

= 0,

(1.2)

for (x1, . . . , xm) ∈ U ; the second equation being the condition of horizontal weak conformality. Here

〈 , 〉1 denotes the standard Lorentzian inner product defined for v = (v1, v2, . . . , vm), w = (w1, w2, . . . ,

wm) ∈ R
m by

〈v, w〉1 = −v1w1 + v2w2 + . . . + vmwm . (1.3)

Harmonic morphisms from domains of Euclidean 3-space into a Riemann surface have a particularly

elegant description in terms of holomorphic data [3] which we called a Weierstrass representation as

the data coincides with that well-known representation of minimal surface in R
3. More precisely, the

fibres of a harmonic morphism ϕ : U → N2 from a domain U of R
3 with values in a Riemann surface

form a foliation by line segments which determines a holomorphic curve in the mini-twistor space of all

lines in R
3, a complex surface. Conversely, such a curve determines a foliation by line segments, and so

a harmonic morphism, on some open subset of R
3. A detailed account of this correspondence is given

in [4, Chapter 1].

From the Weierstrass representation and some geometrical arguments, one can deduce a Bernstein

Theorem that the only harmonic morphism defined globally on R
3 with values in a surface is orthogonal

projection onto a two-dimensional subspace, followed by a weakly conformal map [3].
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In the semi-Riemannian case, there are harmonic morphisms all of whose fibres are degenerate. For

maps from a Minkowski space, we show that these are precisely null real-valued solutions of the wave

equation; in Section 4, we show how to find these by the method of Collins [6].

As for higher dimensions, see [4, §6.8] for the Riemannian case. Note also that (semi-)Riemannian

submersions with minimal or totally geodesic fibres are harmonic morphisms; this is a subject close

to Stere Ianuş’s heart, for example, see [1, 11] for classifications of such maps from pseudo-hyperbolic

spaces. For a study of the foliations which give rise to harmonic morphisms, see [4, 9].

2 Harmonic morphisms from Minkowski 3-space to a Riemann surface

We begin by characterizing those submersive (and so non-degenerate) harmonic morphisms defined on

open subsets of Minkowski 3-space M
3 = R

3
1 with values in a Riemann surface. All manifolds and

tensors defined on them are assumed to be smooth (C∞).

Let ϕ : U → N2 be a C2 mapping from an open subset U of R
3
1 onto a 2-dimensional Riemannian

manifold. Let (u, v) be isothermal coordinates on a domain of N2; then u + iv gives a local complex

coordinate with respect to which we write ϕ(x1, x2, x3) = ϕ1(x1, x2, x3) + i ϕ2(x1, x2, x3). Then, ϕ is a

harmonic morphism if and only if it satisfies the pair of equations (1.2) with m = 3. As before, the pair

is independent of the choice of isothermal coordinates; thus, for local considerations, we can suppose

that ϕ has values in C. We now examine the fibres of ϕ.

Lemma 2.1. Suppose that ϕ : U → C is a C2 submersive harmonic morphism from an open subset of

R
3
1. Then the connected components of the fibres of ϕ are timelike geodesics, and so are segments of

straight lines.

This follows from the immediate generalization to semi-Riemannian manifolds of the theorem of

Baird and Eells [2] that a submersive harmonic morphism with values in a surface has minimal fibres.

In order to proceed, we shall suppose that ϕ : U → C is a C2 harmonic morphism from an open

subset of R
3
1 which satisfies the following conditions (cf. [3]):

8

>

<

>

:

(a) ϕ is submersive on U (and so non-degenerate),

(b) each fibre is connected,

(c) no fibre is part of a line which passes through the origin.

(2.1)

Note that, given any point p where ϕ is submersive, by shifting the origin if necessary, we can always

choose a neighbourhood U of p such that these assumptions hold.

Set V = ϕ(U); note that V is open. Let ℓ be a fibre of ϕ, i.e. ℓ = ϕ−1(z) for some z ∈ V . Then ℓ is

a timelike line. Write ϕ = ϕ1 +iϕ2 . For each p ∈ U , orient Hp so that dϕp|Hp
is orientation preserving,

equivalently {grad ϕ1, grad ϕ2} is an oriented basis; then orient ℓ by choosing its unit positive tangent

vector γ such that {grad ϕ1, grad ϕ2, γ} is an oriented basis. We can now proceed as for the Riemannian

case, defining the fibre position vector to be the unique c ∈ R
3 satisfying 〈c, γ〉1 = 0 and with endpoint

on ℓ ; then c is necessarily spacelike. Noting that Hp is spacelike, let JH denote rotation through +π/2

on Hp and define the complex vector ξ = ξ(z) by

ξ = (c + iJH
c)

‹

|c|21 (2.2)

where |c|21 := 〈c, c〉1 . On extending the inner product 〈 , 〉1 on R
3
1 by complex-bilinearity to vectors in

C
3, the equation of ℓ can be written as a single ‘complex’ equation:

〈ξ(z) , x〉1 = 1, explicitly, − ξ1x1 + ξ2x2 + ξ3x3 = 1 ; (2.3)
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note that this is equivalent to the pair of real equations: 〈Re ξ , x〉1 = 1, 〈Im ξ , x〉1 = 0 . From (2.2)

we see that the complex vector ξ is null in the sense that

〈ξ, ξ〉1 = 0 , equivalently, |Re ξ|21 = |Im ξ|21 and 〈Re ξ, Im ξ〉1 = 0 . (2.4)

Also the Hermitian square norm |ξ|21 := 〈ξ, ξ〉1 = |Re ξ|21 + |Im ξ|21 satisfies |ξ|21 = 2/|c|21 , so that

we have a one-to-one correspondence between vectors ξ ∈ C
3 which satisfy (2.4) and have positive

Hermitian square norm:

|ξ|21 > 0 (2.5)

and non-zero spacelike vectors c ∈ R
3
1 ; the inverse is given by

c = 2 Re ξ
‹

|ξ|21 , so that JH
c = 2 Im ξ

‹

|ξ|21 .

Now, as z varies, so does the fibre ℓ = ϕ−1(z), so that z 7→ ξ(z) defines a mapping on V = ϕ(U). Then,

just as in [4, Lemma 1.3.3], ξ : V → C
3 is holomorphic, leading to the following result.

Proposition 2.2. Any C2 harmonic morphism ϕ : U → C from an open subset of R
3
1 which satisfies

conditions (2.1) is a solution z = ϕ(x) to the equation (2.3) for some holomorphic map ξ : V → C
3

from an open subset of C which satisfies (2.4) and (2.5).

Holomorphic mappings ξ = (ξ1, ξ2, ξ3) : V → C
3 satisfying (2.4) with ξ2 − iξ3 nowhere zero are all

of the form

ξ =
1

2h

`

2g, 1 + g2, i(1 − g2)
´

, (2.6)

where g, h : V → C are holomorphic functions, with h nowhere zero, given by g = ξ1

‹

(ξ2 − iξ3) and

h = 1
‹

(ξ2 − iξ3). Then the representation (2.3) takes the form

−2g(z) x1 + (1 + g(z)2) x2 + i(1 − g(z)2) x3 = 2h(z) . (2.7)

A simple calculation gives |ξ|21 =
`

1 − |g|2
´2‹

(4|h|2), hence |ξ|21 = 0 if and only if |g| = 1 . Now, by

using equation (2.7) rather than (2.3), we can allow h to be zero; on recalling that conditions (2.1) are

always satisfied locally, we obtain the following result.

Proposition 2.3. Any C2 submersive harmonic morphism ϕ : U → C from an open subset of R
3
1 is

locally a solution z = ϕ(x) to (2.7) for some holomorphic maps g, h : V → C defined on an open subset of

C with |g(z)|−1 nowhere zero, possibly after a change of coordinates (x1, x2, x3) 7→ (x1,−x2,−x3) .

Remark 2.4. (i) The change of coordinates is only necessary to avoid having ξ2− iξ3 = 0 which would

correspond to a pole of g. This case can be included if we allow g and h to be meromorphic, as in [4,

Chapter 1].

(ii) The theorem shows that any C2 submersive harmonic morphism defined on an open subset of

R
3
1 with values in a Riemann surface is, in fact, real analytic. This is false for degenerate harmonic

morphisms, see below.

We can interpret g and h as in the Riemannian case: Let × denote the cross product in R
3
1 given

by

(a1, a2, a3) × (b1, b2, b3) =
`

(a2b3 − a3b2), −(a3b1 − a1b3), −(a1b2 − a2b1)
´

.

Then a positively oriented unit vector along the line (2.7) is given by

γ(z) =
Re ξ × Im ξ

|Re ξ × Im ξ| =
1

1 − |g|2
`

1 + |g|2, 2g
´

, (2.8)
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so that g(z) represents the direction of the fibre over z . More precisely, let H2 = {x ∈ R
3
1 : −x1

2 +

x2
2 + x3

3 = −1} denote the hyperbola of two sheets in R
3
1 and let σ : H2 → C ∪ {∞} \ {|z| = 1} be

stereographic projection from (−1, 0, 0) given by

σ(x1, x2, x3) = (x2 + ix3)
‹

(1 + x1) = (x1 − 1)
‹

(x2 − ix3) . (2.9)

Then, as in the Riemannian case [4, Chapter 1], g(z) = σ(γ(z)), and h(z) represents c(z) in the chart

given by σ, that is, h(z) = dσγ(z)(c(z)) .

Note that H2 has two components H2
± = {(x1, x2, x3) ∈ H2 : ±x1 > 0} corresponding under

stereographic projection to the two components of C ∪ {∞} \ {|z| = 1}. If |g(z)| < 1, then γ(z) ∈ H2
+

is future-pointing, and if |g(z)| > 1, then γ(z) ∈ H2
− is past-pointing.

We now obtain a converse to Proposition 2.2 as a consequence of a general construction of complex-

valued harmonic morphisms due in the R
3 case to Jacobi [12]. It is a semi-Riemannian version of

[4, Theorem 9.2.1]. Let (M, g) be an arbitrary Riemannian or semi-Riemannian manifold; denote the

corresponding inner product on TM (or its complex-bilinear extension to T cM = TM ⊗ C) by 〈 , 〉M ,

and the Laplace–Beltrami operator by ∆M .

Proposition 2.5. Let A be an open subset of M × C and let G : A → C, (x, z) 7→ G(x, z) be

a C2 mapping which is (i) a harmonic morphism in its first argument, i.e., for each fixed z, x 7→
Gz(x) := G(x, z) is a harmonic morphism

`

(x, z) ∈ A
´

; (ii) holomorphic in its second argument z.

Let ϕ : U → C be a C2 solution to the equation G(x, ϕ(x)) = const. on an open subset U of M , and

suppose that grad Gz(x, ϕ(x)) is non-zero on a dense subset of U . Then ϕ is a harmonic morphism.

Proof: The hypothesis that G is a harmonic morphism in its first argument means that

(a) ∆MGz = 0 , (b) 〈grad Gz , grad Gz〉M = 0
`

(x, z) ∈ A
´

. (2.10)

To show that ϕ is a harmonic morphism we must show that

(a) ∆Mϕ = 0 , (b) 〈grad ϕ , grad ϕ〉M = 0 . (2.11)

We do this by applying the chain rule, as follows. Let p ∈ U be a point where grad Gz is non-

zero. Let (x1, . . . , xm) be coordinates centred on p which are normal in the sense that the Christoffel

symbols vanish at p. Then, on a neighbourhood of p we have G
`

x1, . . . , xm, ϕ(x1, . . . , xm)
´

= const.

Differentiating this with respect to xα (α ∈ {1, . . . , m}) gives

∂G

∂z

∂ϕ

∂xα
+

∂G

∂xα
= 0 , (2.12)

hence, „

∂G

∂z

«2

〈grad ϕ , grad ϕ〉M = 〈grad Gz , grad Gz〉M .

From (2.12) and our assumption on grad Gz it follows that ∂G/∂z is non-zero, hence (2.11b) follows

from (2.10b).

Next, we differentiate (2.12) with respect to xβ (β ∈ {1, . . . , m}) to give

∂G

∂z

∂2ϕ

∂xα∂xβ
+

∂2G

∂z2

∂ϕ

∂xα

∂ϕ

∂xβ
+

∂2G

∂z∂xβ

∂ϕ

∂xα
+

∂2G

∂xα∂xβ
= 0 .

Since the coordinates are normal at p, on multiplying by gαβ and summing, we obtain at p,

∂G

∂z
∆Mϕ +

∂2G

∂z2
〈grad ϕ, grad ϕ〉M + gαβ ∂2G

∂z∂xβ

∂ϕ

∂xα
+ ∆MGz = 0 . (2.13)
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From (2.10b) we have gαβ ∂G

∂xα

∂G

∂xβ
= 0. Differentiating with respect to z (and using gβα = gαβ) gives

gαβ ∂2G

∂z∂xβ

∂G

∂xα
= 0. Hence, from (2.12), the third term of (2.13) vanishes; from (2.10b), so does the

second, hence (2.13) reads
∂G

∂z
∆Mϕ + ∆MGz = 0 ,

and (2.11b) follows.

We apply this to the case of interest: M = R
3
1 .

Theorem 2.6. Let ξ : V → C
3 , ξ = (ξ1, ξ2, ξ3) be a holomorphic map from an open subset of C or

a Riemann surface which satisfies (2.4). Then any C2 solution ϕ : U → V , z = ϕ(x) to (2.3) on an

open subset U of R
3
1 is a harmonic morphism of rank at least one everywhere. It is degenerate at the

points of the fibres ϕ−1(z) for which |ξ(z)|21 = 0 .

Conversely, every submersive C2 harmonic morphism from an open subset of R
3
1 to a Riemann

surface is given this way locally, after shifting the origin if necessary.

Proof: Set

G(x, z) = 〈ξ(z) , x〉1 . (2.14)

Then grad Gz = ξ(z), but this is non-zero at any point z = ϕ(x) by (2.3). It follows from Proposition

2.5 that ϕ is a harmonic morphism; from (2.12) we see that dϕ 6= 0 at all points of U , so that ϕ has

rank at least one everywhere.

Let z ∈ V . Suppose that |ξ(z)|21 6= 0. Then, ξ(z) 6= 0 so the fibre ϕ−1(z) is non-empty; from (2.4)

we see that Re ξ(z) and Im ξ(z) are spacelike, orthogonal and have non-zero norm, and ϕ is submersive

at all points on the fibre.

Suppose instead that |ξ(z)|21 = 0. Then from (2.4), Re ξ(z) and Im ξ(z) are lightlike and orthogonal

and so must be linearly dependent. Hence, from (2.3), the fibre ϕ−1(z) is non-empty if and only if

Re ξ(z) 6= 0 but Im ξ(z) = 0, in which case it is the degenerate plane < Re ξ(z), x >1= 1, all of whose

points are degenerate points of ϕ.

The converse follows from Proposition 2.2.

Remark 2.7. Given a holomorphic ξ : V → C
3 which satisfies (2.4), as z varies, the lines (2.3) form

a congruence, i.e., a two-parameter family of lines, which may or may not be a foliation. The proof,

equation (2.12) and the implicit function theorem shows that there is a local C2 solution z = ϕ(x) to

(2.3) though a point (p, z0) if and only if ∂G/∂z ≡ 〈ξ′(z), x〉1 is non-zero at that point. Indeed, at

such a point, the lines (2.3) form a foliation. If, on the other hand, ∂G/∂z = 0 at (p, z0), then the lines

(2.3) meet to first order; we call such a point an envelope point of the congruence.

We can give a converse to Proposition 2.3, dropping the condition |g(z)| 6= 1 as follows.

Corollary 2.8. Let g, h : V → C ∪ {∞} be holomorphic maps from an open subset of C (or of

a Riemann surface). Then any C2 solution ϕ : U → V, z = ϕ(x1, x2, x3) to (2.7) is a harmonic

morphism with rank at least one everywhere. Further,

(i) If |g(z)| 6= 1, then the fibre ϕ−1(z) is non-empty and ϕ is regular at all of its points.

(ii) If |g(z)| = 1 and h(z)/g(z) is real, then ϕ−1(z) is non-empty and ϕ is degenerate at all of its

points.

(iii) If |g(z)| = 1 and h(z)/g(z) is not real, then ϕ−1(z) is empty.
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Proof: This follows from Theorem 2.6, noting that, when |g(z)| = 1, we have Im ξ(z) = 0 if and only

if Im (h(z)/g(z)) = 0 . Indeed, when |g(z)| = 1 , writing g(z) = eiθ(z) with θ(z) ∈ R, the real and

imaginary parts of (2.7) read

cos θ (−x1 + cos θ x2 + sin θ x3) = Re h

sin θ (−x1 + cos θ x2 + sin θ x3) = Im h

)

;

this system has a solution if and only if h(z) = s(z) eiθ(z) for some s(z) ∈ R, in which case ϕ−1(z) is

the degenerate plane

−x1 + cos θ(z) x2 + sin θ(z) x3 = s(z) . (2.15)

We shall see in Corollary 4.6 that all C2 submersive harmonic morphisms which are degenerate

everywhere satisfy (2.15).

In the following examples we write q = x2 + ix3 .

Example 2.9. (Orthogonal projection) Define g, h : C → C by g(z) = 0, h(z) = z/2 . Then (2.7)

becomes: q = z. This defines the congruence of lines parallel to the x1-axis. These lines are the fibres

of the globally defined harmonic morphism ϕ : R
3
1 → C given by ϕ(x1, x2, x3) = x2 + ix3 .

Example 2.10. (Radial projection) Define g, h : C ∪ {∞} → C ∪ {∞} by g(z) = z, h(z) = 0 . Then

(2.7) becomes

z2q − 2z x1 + q = 0 . (2.16)

This has solutions

z± =
`

x1 ±
p

x1
2 − |q|2

´‹

q . (2.17)

Note that |z+||z−| = 1 . Let C = {(x1, x2, x3) : x1
2 = |q|2} denote the light cone and U = {(x1, x2, x3) :

x1
2 > |q|2} its interior. Then (2.17) defines smooth solutions z± : U \ {(x1, 0, 0) : x1 ∈ R} → C ; on

setting z+(x1, 0, 0) = 0 and z−(x1, 0, 0) = ∞ these extend to smooth solutions z+ : U → D2, z− : U →
C∪ {∞} \D2, where D2 is the open unit disc. If we now put ϕ± = σ−1 ◦ z± , where σ is stereographic

projection (2.9), then we obtain smooth submersive harmonic morphisms ϕ± : U → H2 defined by

ϕ± = ∓ 1√
x1

2 − x2
2 − x3

2
(x1, x2, x3) .

Geometrically, ϕ± is ∓-radial projection centred on the origin. Its fibres are the half-lines of U from

the origin.

If, on the other hand, we restrict z± to the exterior U
c

= {(x1, x2, x3) : x1
2 < |q|2} of the light cone,

then |z+| = |z−| = 1 and we obtain everywhere-degenerate harmonic morphisms z± : U
c → S1 ⊂ C.

The fibres of these harmonic morphisms are degenerate planes tangent to the light cone C ; each point

x of U
c

lies on two such planes, as x approaches the light cone both of these planes tend to the tangent

plane.

Example 2.11. (Disc example) Define g, h : C → C by g(z) = z, h(z) = iz. Then (2.7) becomes

z2q − 2z(i + x1) + q = 0 . (2.18)

This has solutions

z± =
`

i + x1 ±
p

(i + x1)2 − |q|2
´‹

q .

Noting that (i + x1)
2 − |q|2 = −1 − |x|21 + 2ix1 never lies on the non-negative real axis, write

(i + x1)
2 − |q|2 = reiθ (r > 0, 0 < θ < 2π) ;
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then on taking
p

(i + x1)2 − |q|2 =
√

reiθ/2 , we see that the maps z± are smooth on R
3
1 \ {(x1, 0, 0)} .

Setting z−(x1, 0, 0) = 0, z+(x1, 0, 0) = ∞ extends these to smooth harmonic morphisms z− : R
3
1 → D2

and z+ : R
3
1 → C ∪ {∞} \ D2 . Note that z+(x1, q) = 1/z−(x1, q),

`

(x1, q) ∈ R
3
1

´

. Equation (2.18)

is invariant under rotations z 7→ eiθz, q 7→ eiθq , so that it defines a congruence of lines which is

rotationally symmetric about the x1-axis. Hence, to describe this congruence, it suffices to determine

the directions of the lines through the points (0, u, 0) for u > 0 . At such a point,

z± =
`

i ±
p

−1 − u2
´‹

u = i
`

1 ±
p

1 + u2
´‹

u .

Comparing with (2.9), we see that the direction γ of the fibre at z is given by γ(z) =
`

∓
√

1 + u2, 0,−u
´

;

this direction is perpendicular to the radius from (0, 0, 0) to (0, u, 0) and inclined at an angle

arctan
`

u/
√

1 + u2
´

(and pointing ‘clockwise’) to the negative (resp. positive) x1-axis. As u increases

from 0 to ∞ , this angle increases from 0 to π/4 . We thus obtain surjective submersive harmonic

morphisms z− : R
3
1 → D2 and z+ : R

3
1 → C ∪ {∞} \ D2 . Composing with σ−1 gives surjective

submersive harmonic morphisms ϕ− : R
3
1 → H2

+ and ϕ+ : R
3
1 → H2

− .

Note that we may introduce a real parameter t 6= 0 and set h(z) = itz (with g(z) = z unchanged).

This gives the same example scaled by a factor of t; as t → 0, this scaled disc example tends to radial

projection (Example 2.10).

Corollary 2.12. There is a globally defined surjective submersive harmonic morphism from Minkowski

3-space M
3 = R

3
1 to the unit disc.

Indeed, both the disc example and orthogonal projection (Example 2.9) define harmonic morphisms

globally on Minkowski 3-space. This is in contrast to the Riemannian case, where we established a

Bernstein-type theorem [3] (see also [4, Theorem 6.7.3]) that orthogonal projection is the only globally

defined harmonic morphism from R
3 to a surface, up to postcomposition with weakly conformal maps.

Globally defined harmonic morphisms from higher-dimensional Minkowski spaces can be obtained by

precomposing such harmonic morphisms with orthogonal projections R
m
1 → R

3
1 for any m > 3.

3 Harmonic morphisms from Minkowski 3-space to a Lorentz surface

We recall some facts about hyperbolic numbers. Let D = {(x1, x2) ∈ R
2} equipped with the usual

coordinatewise addition, but with multiplication given by

(x1, x2) (y1, y2) = (x1y1 + x2y2 , x1y2 + x2y1) .

We call the commutative ring D the set of hyperbolic or double numbers. Write j = (0, 1); then we have

(x1, x2) = x1 +x2j with j2 = 1. Note that, unlike the complex numbers, D has zero divisors, namely the

numbers a(1 ± j) (a ∈ R). Multiplication by j defines an involution ID on D called the characteristic

involution, explicitly, ID(x1, x2) = (x2, x1).

For z = x1 + x2j, (x1, x2 ∈ R), we write x1 = Re z, x2 = Im z and z = x1 − x2j . We shall often

identify z ∈ D with the point (x1, x2) in standard coordinates in Minkowski 2-space M
2 = R

2
1, then the

standard Minkowski square norm |z|21 = 〈z, z〉1 = −x 2
1 + x 2

2 is given by |z|21 = −zz.

From the chain rule, we obtain

∂

∂z
=

1

2

„

∂

∂x1
+

∂

∂x2

«

and
∂

∂z
=

1

2

„

∂

∂x1
− ∂

∂x2

«

,

so that, in standard coordinates (x1, x2) , the Laplacian on M
2 is given by

∆M
2

= − ∂2

∂x 2
1

+
∂2

∂x 2
2

= −4
∂2

∂z∂z
= −4

∂2

∂z∂z
.
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By analogy with the complex numbers, we say that a C2 map ϕ : U → D, w = ϕ(z), from an open

subset of D is H-holomorphic (resp., H-antiholomorphic) if we have

∂w

∂z
= 0

„

resp.,
∂w

∂z
= 0

«

;

equivalently, on writing z = x1 + x2j , w = u1 + u2j , the map ϕ satisfies the H-Cauchy-Riemann

equations:

∂u1

∂x1
=

∂u2

∂x2
and

∂u1

∂x2
=

∂u2

∂x1

„

resp.,
∂u1

∂x1
= −∂u2

∂x2
and

∂u1

∂x1
= −∂u2

∂x2

«

.

These conditions are equivalent to demanding that the differential of ϕ intertwine the characteristic

involutions, viz., dϕ ◦ ID = ID ◦ dϕ (resp., dϕ ◦ ID = −ID ◦ dϕ ).

By a Lorentz surface, we mean a smooth surface equipped with a conformal equivalence class of

Lorentzian metrics — here two metrics g, g′ on N2 are said to be conformally equivalent if g′ = µg

for some (smooth) function µ : N2 → R \ {0}. Any Lorentz surface is locally conformally equivalent

to 2-dimensional Minkowski space M
2, see, for example, [4]. Let ϕ : U → N2

1 be a C2 mapping from

an open subset U of R
3
1 to a Lorentz surface. For local considerations, we can assume that ϕ has

values in M
2. Then, on identifying M

2 with the space D of hyperbolic numbers as above and writing

ϕ = ϕ1 + ϕ2j , the map ϕ is a harmonic morphism if and only if it satisfies equations (1.2) with m = 3,

where now ϕ has values in D.

From now on, suppose that ϕ : U → M
2 = D is a non-constant harmonic morphism defined on an

open subset U of R
3
1. As in the last section, by a generalization of [2], its fibres are straight lines, more

precisely,

Lemma 3.1. Let p ∈ U be a point where ϕ is submersive. Then the connected component of the fibre

of ϕ through p is a spacelike geodesic.

To proceed, we make the assumptions (2.1) of the previous section.

Write V = ϕ(U) and let ℓ be a fibre of ϕ : U → D, i.e. ℓ = ϕ−1(z) for some z ∈ V . Then, in

contrast to the last section, ℓ is a spacelike line. Now the directions of spacelike lines are parametrized

by the pseudosphere S2
1 = {(x1, x2, x3) ∈ R

3 : −x 2
1 + x 2

2 + x 2
3 = 1}. Let ℓ have direction γ ∈ S2

1 ⊂ R
3
1.

We proceed by analogy with the last section, replacing the rotation on the horizontal space by a

characteristic involution.

Let c ∈ R
3 be the unique vector which satisfies 〈c, γ〉1 = 0 and has endpoint on ℓ; note that c

can be timelike, null or spacelike. Write ϕ = ϕ1 + ϕ2j . For each x ∈ U , orient Hx so that dϕx |Hx
is

orientation preserving, equivalently, {grad ϕ1, grad ϕ2} is an oriented basis; then orient ℓ by choosing

its unit positive tangent vector γ such that {grad ϕ1, grad ϕ2, γ} is an oriented basis. Let IH denote the

characteristic involution in the 2-plane Hx obtained by lifting ID from D, equivalently IH interchanges

grad ϕ1 and grad ϕ2. If c is non-null (spacelike or timelike), then |c|21 ≡ 〈c, c〉1 is non-zero and we may

define a ‘hyperbolic’ vector ξ = ξ(z) ∈ D
3 by

ξ = (c + j IH
c)

‹

|c|21 . (3.1)

Then, in a way analogous to that in the last section, the equation of ℓ can be written as a single

‘hyperbolic’ equation:

〈ξ(z), x〉1 = 1 ; (3.2)

this is identical to (2.3) except that the inner product 〈 , 〉1 on R
3
1 is extended by hyperbolic bilinearity

to D
3 = R

3
1 ⊗ D. In the case when c is null, this equation defines a (degenerate) plane which contains
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the line ℓ ; we shall discuss this case below. Again, ξ is null in the sense that it satisfies 〈ξ, ξ〉1 = 0,

explicitly (note the difference of sign to that in (2.4)),

|Re ξ(z)|21 = −|Im ξ(z)|21 and 〈Re ξ(z), Im ξ(z)〉1 = 0 . (3.3)

The hyperbolic square norm |ξ|21 := 〈ξ, ξ〉1 = |Re ξ(z)|21 − |Im ξ(z)|21 satisfies |ξ|21 = 2/|c|21 where

|c|21 = 〈c, c〉1, so that (3.1) gives a one-to-one correspondence between ξ ∈ D
3 which satisfy 〈ξ, ξ〉1 = 0

and have |ξ|21 6= 0 and vectors c ∈ R
3
1 which have |c|21 6= 0; the inverse is given by

c = 2 Re ξ/|ξ|21 , so that IH
c = 2 Im ξ/|ξ|21 .

As in the previous section, if ϕ : U → D is a harmonic morphism satisfying assumptions (2.1), then

ξ : V = ϕ(U) → D
3 is H-holomorphic. Conversely, there is a version of Proposition 2.5 where C is

replaced by D, but now we must impose the stronger condition that |grad G|21 is non-zero to ensure

that ∂G/∂z is not a zero divisor; applying this as before we obtain the following version of Theorem

2.6.

Theorem 3.2. Let ξ = (ξ1, ξ2, ξ3) : V → D
3 be an H-holomorphic map from an open subset of D

(or of a Lorentz surface) which is null: 〈ξ, ξ〉1 = 0 and has non-zero hyperbolic square norm |ξ|21 on a

dense open subset of V . Then any C2 solution ϕ : U → M
2 = D, z = ϕ(x) on an open subset of R

3
1

to equation (3.2) is a harmonic morphism.

Conversely, every C2 submersive harmonic morphism from an open subset of R
3
1 to a Lorentz

surface is given this way locally, after shifting the origin if necessary.

H-holomorphic functions ξ = (ξ1, ξ2, ξ3) : V → D
3 satisfying 〈ξ, ξ〉1 = 0 with ξ1 − ξ2j not zero and

not a zero divisor are all given by

ξ =
1

2h(z)

`

−(1 + g(z)2) , j(1 − g(z)2) , −2g(z)
´

, (3.4)

where g, h : V → D (h 6= 0) are H-holomorphic functions; explicitly,

g = ξ3

‹

(ξ1 − ξ2j) = (ξ1 + ξ2j)
‹

ξ3 , h = −1
‹

(ξ1 − ξ2j) .

Then the representation (3.2) takes the form

(1 + g(z)2) x1 + j (1 − g(z)2) x2 − 2g(z) x3 = 2h(z) . (3.5)

From (3.4) we have |ξ|21 =
`

1 − |g|2
´2‹

(4|h|2); we deduce the following from Theorem 3.2.

Corollary 3.3. Let g, h : V → D be H-holomorphic functions from an open subset of D (or of a

Lorentz surface) with |g(z)| 6≡ 1. Then any C2 solution ϕ : U → V , z = ϕ(x1, x2, x3), to (3.5) is a

harmonic morphism which is not degenerate everywhere.

Conversely, any C2 submersive harmonic morphism ϕ is given locally this way, possibly after a

change of coordinates.

We can interpret g and h in a way analogous to previous cases. Indeed, let K1 = {(x1, x2, x3) ∈ S2
1 :

x3 = −1} and H1 = {z ∈ D : |z|2 = −1}. Then we can identify S2
1 \ K1 with D \ H1 by stereographic

projection σH : (x1, x2, x3) = (x1 + x2j)/(1 + x3). Then g(z) = σH(γ(z)) and h(z) = (dσH)γ(z)(c(z)).

Example 3.4. (Orthogonal projection) Define g, h : D → D by g(z) = 0, h(z) = z/2 . Then

(3.5) becomes: x1 + x2j = z . This defines the congruence of lines parallel to the x3-axis. These

lines are the fibres of the globally defined harmonic morphism ϕ : M
3 = R

3
1 → M

2 = D given by

ϕ(x1, x2, x3) = x1 + x2j .
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Example 3.5. (Radial projection) Define g, h : D → D by g(z) = z, h(z) = 0 . Then (3.5) becomes:

z2(x1 − x2j) − 2z x3 + (x1 + x2j) = 0 . (3.6)

This can be solved on R
3
1 \ {x1 = ±x2} to give

z =
x3 + ε

p

−x 2
1 + x 2

2 + x 2
3

x1 − x2j
=

`

x3 + ε
p

−x 2
1 + x 2

2 + x 2
3

´`

x1 + x2j
´

x 2
1 − x 2

2

;

here we set ε = ±1,±j to get all possible square roots in D . Note that on the exterior U
c

=

{(x1, x2, x3) ∈ D : −x 2
1 + x 2

2 + x 2
3 > 0} of the light cone C, taking ε = ±1 gives two smooth harmonic

morphisms z± : U
c \ {x1 = ±x2} → M

2 , which can be interpreted as compositions z± = σH ◦ ϕ± ,

where ϕ± is the restriction to U
c \ {x1 = ±x2} of radial projection (or its negative) U

c → S2
1 :

x = (x1, x2, x2) 7→ ∓ x
p

|x|21
= ∓ 1

p

−x 2
1 + x 2

2 + x 2
3

(x1, x2, x3) .

When x ∈ C , (3.5) has repeated solutions z and the fibre through x is the (degenerate) tangent plane

to C at that point. Note that both M
2 and S2

1 have conformal compactification given by a quadric Q2
1

in RP 3, see [4, Example 14.1.22]; as x approaches a point on C, ϕ±(x) tends to a point at infinity of

S2
1 in Q2

1, and the harmonic morphism can be regarded as having values in Q2
1.

When x lies inside the light cone there is no value of z ∈ M
2 satisfying (3.5) (contrast with Example

2.10).

Alternatively, we can take ε = ±j to get the other two values of the square root, in which case

z± =
x3 ±

`

p

−x 2
1 + x 2

2 + x 2
3

´

j

x1 − x2j
=

x1 + x2j

x3 ∓
`

p

−x 2
1 + x 2

2 + x 2
3

´

j
.

Then |z±|21 = −1 and z± is an everywhere-degenerate harmonic morphism U
c \ {x1 ± x2} → M

2 with

values on the hyperbola H1. The fibres of these harmonic morphisms are the degenerate tangent planes

to the light cone C . As x tends to a point in the set {x1 = ±x2} , z± tends to the point at infinity

on the hyperbola and we can regard z± as extending to an everywhere-degenerate harmonic morphism

from U
c

to the compactification Q2
1 of M

2 .

Example 3.6. (Disc example) Define g, h : D → D by g(z) = z , h(z) = zj . Then (3.5) becomes

z2(x1 − x2j) − 2z(x3 + j) + x1 + x2j = 0 . (3.7)

This can be solved on R
3
1 \ {x1 = ±x2} to give

zε =
x3 + j + ε

p

−x 2
1 + x 2

2 + x 2
3 + 1 + 2x3j

x1 − x2j
(ε = ±1,±j) .

The square root is smooth on the region W where η1 = −x 2
1 +x 2

2 +x 2
3 +1+2x3 and η2 = −x 2

1 +x 2
2 +

x 2
3 + 1 − 2x3 are both positive, this is given by W = {(x1, x2, x3) ∈ R

3
1 :

`

1 − |x3|
´2 − x 2

1 + x 2
2 > 0} .

Then on W \ {x1 = ±x2} we can compute the square root to give

zε =
x3 + j + ε

˘

1
2
(
√

η1 +
√

η2) + 1
2
(
√

η1 −√
η2)j

¯

x1 − x2j
(ε = ±1,±j) .

In order to describe these harmonic morphisms geometrically, first take ε = 1 . Then at a point

(x1, x2, x3) = (u, 0, 0), with |u| < 1 so that it lies in W , we have z1 = (j +
√

1 − u2)
‹

u and so γ

consists of multiples of the vectors (
√

1 − u2, 1, 0); it is easily seen that the fibres of z1 are tangent to

the hyperbola: x 2
1 − x 2

2 = 1, x3 = 0 . As x3 increases from 0, the lines start tilting.
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With ε = j , we find that, at (x1, x2, 0) ,

zj =
j +

`

p

1 − x 2
1 + x 2

2

´

j

x1 − x2j

and γ consists of multiples of the vectors (x2, x1,−
√

1 − r2) if x 2
1 > x 2

2 , and (x2, x1,−1) if x 2
1 < x 2

2 ,

where r2 = −x 2
1 +x 2

2 . Thus, at any point P (x1, x2, 0) , the fibre is perpendicular in a Lorentzian sense

to the radius OP ; as P travels along the radius from O, it starts vertically down and then swivels until

it is horizontal either when it hits the hyperbola: x 2
1 −x 2

2 = 1, x3 = 0 (i.e. if x 2
1 > x 2

2 ), or, if it avoids

the hyperbola (i.e. if x 2
1 < x 2

2 ), at infinity. It is thus a hyperbolic analogue of the disc example that

occurs in the Riemannian case [4, Example 1.5.3]. Note that since (3.7) is invariant under the change of

coordinates (x1, x2, x3, z) 7→ (x1,−x2, x3, 1/z), the cases ε = −1,−j are equivalent to the above cases.

Note that, as in Example 2.11 we may introduce a real parameter t 6= 0 and set h = tzj (with

g = z unchanged); this gives the same example scaled by a factor of t. Again, as t → 0, this scaled disc

example tends to radial projection (Example 3.5).

4 Degenerate harmonic morphisms on Minkowski spaces

By definition (see the Introduction), a C1 horizontally weakly conformal map is degenerate at a point

x if and only if the kernel of dϕx is degenerate. It follows [4, Remark 14.5.5] that an everywhere-degen-

erate harmonic morphism ϕ from a Lorentzian manifold Mm
1 to an arbitrary semi-Riemannian manifold

N necessarily has rank one everywhere; further, by [4, Proposition 14.5.8], it factors locally into the

composition of an everywhere-degenerate harmonic morphism from Mm
1 to R and an immersion of R

into N . Hence, to determine all such ϕ, it suffices to take N = R. In the case that Mm
1 is an open

subset U of m-dimensional Minkowski space M
m = R

m
1 , an everywhere-degenerate harmonic morphism

is just a null real-valued solution of the wave equation, i.e. a solution ϕ : U → R of the system (1.2).

To solve this problem, we need the following version of Proposition 2.5; note that it is empty if M

is Riemannian. As the proof uses the same calculations, we omit it.

Proposition 4.1. Let M be an arbitrary semi-Riemannian manifold. Let A be an open subset of

M × R and let G : A → R, (x, z) 7→ G(x, z), be a C2 mapping which is an everywhere-degenerate

harmonic morphism in its first argument, i.e, writing Gz(x) = G(x, z),

(a) ∆MGz = 0 , (b) 〈grad Gz , grad Gz〉M = 0
`

(x, z) ∈ A
´

. (4.1)

Let ϕ : U → C be a C2 solution to equation G(x, ϕ(x)) = const. on an open subset U of M and

suppose that grad Gz(x, ϕ(x)) is non-zero on a dense subset of U . Then ϕ is an everywhere-degenerate

harmonic morphism, i.e., it satisfies the system

(a) ∆Mϕ = 0 , (b) 〈grad ϕ , grad ϕ〉M = 0 . (4.2)

In the Lorentzian case this gives

Lemma 4.2. Let ϕ(x1, x2, . . . , xm) satisfy

τ
`

ϕ(x1, x2, . . . , xm), x2, . . . , xm

´

= x1 . (4.3)

Then ϕ satisfies the system

(a) 2ϕ = 0 , (b) 〈grad ϕ , grad ϕ〉1 = 0 (4.4)
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if and only if, for each fixed x1, τ satisfies the system

(a) ∆R
m−1

τ = 0 , (b) 〈grad τ , grad τ〉Rm−1 = 1 ; (4.5)

that is, ϕ is a null solution to the wave equation if and only if, on each slice x1 = const., τ is a harmonic

function with |grad τ |2 = 1.

Proof: Set G(ϕ, x1, x2, . . . , xm) = τ(ϕ, x2, . . . , xm) − x1. Then

„

∂G

∂x1
,

∂G

∂x2
, . . . ,

∂G

∂xm

«

=

„

−1,
∂τ

∂x2
, . . . ,

∂τ

∂xm

«

so that
〈grad G , grad G〉1 = 〈grad τ , grad τ〉Rm−1 − 1 and

2G ≡ ∆M
m

G = ∆R
m−1

τ .

The result follows.

Solutions of the system (4.5) are easy to find, as follows.

Lemma 4.3. Any C2 solution ϕ : U → R on an open subset of R
m−1 to the system (4.5) is affine,

i.e.,

τ(x2, . . . , xm) = ℓ1 +
m

X

i=2

ℓixi (4.6)

for some constants ℓ1, ℓ2, . . . , ℓm with
Pm

i=2 ℓ 2
i = 1.

Proof: Since τ is harmonic, it is smooth. Set T = grad τ : U → R
m. Then T is harmonic and has

image in the unit sphere. By the maximum principle, T is constant. Indeed, choose any point p ∈ U

and set ℓ = T (p). Then the function x 7→ 〈T (x), ℓ〉 is harmonic and has a maximum at p and so is

constant. Integrating yields (4.6).

We deduce the following result.

Theorem 4.4. (Collins [6]) Let ϕ : U → R be a null C2 solution to the wave equation, i.e. a solution

to (4.4), on an open set of M
m. Suppose that ∂ϕ/∂x1 6= 0. Then, locally, z = ϕ(x1, . . . , xm) satisfies

ℓ1(z) +
m

X

i=2

ℓi(z)xi = x1 (4.7)

for some C2 functions ℓ1, ℓ2, . . . , ℓm : V → R defined on an open subset of R with
Pm

i=2 ℓ 2
i = 1.

Conversely, any C2 solution to (4.7) is a null solution to the wave equation.

Proof: By the implicit function theorem we can solve ϕ(x1, x2, . . . , xm) = z to give

x1 = τ(z, x2, . . . , xm). (4.8)

Then, by Lemma 4.2, on each slice x1 = const., τ satisfies (4.5). By Lemma 4.3, τ |x1=const. is affine,

thus,

τ(z, x2, . . . , xm) = ℓ1(z) +

m
X

i=2

ℓi(z)xi

with
Pm

i=2 ℓ 2
i = 1. Then (4.8) yields (4.7).
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Corollary 4.5. The level sets of a C2 null solution to the wave equation are degenerate hyperplanes.

Corollary 4.6. Any C2 harmonic morphism ϕ : U → R, z = ϕ(x1, x2, x3) from an open subset of

M
3 = R

3
1 which is submersive and degenerate everywhere is locally the solution to an equation

−x1 + cos θ(z) x2 + sin θ(z) x3 = r(z) , (4.9)

for some C2 functions θ, r : V → R defined on an open subset of R.

Conversely, any C2 solution to this equation on an open subset of R
3
1 is a harmonic morphism

which is degenerate everywhere.
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