Bull. Math. Soc. Sci. Math. Roumanie Tome 52(100) No. 3, 2009, 195–209

Harmonic morphisms from Minkowski space and hyperbolic numbers

by

PAUL BAIRD AND JOHN C. WOOD* To Professor S. Ianuş on the occasion of his 70th Birthday

Abstract

We show that all harmonic morphisms from 3-dimensional Minkowski space with values in a surface have a Weierstrass representation involving the complex numbers or the hyperbolic numbers depending on the signature of the codomain. We deduce that there is a non-trivial *globally defined* submersive harmonic morphism from Minkowski 3-space to a surface, in contrast to the Riemannian case. We show that a *degenerate* harmonic morphism on a Minkowski space is precisely a null real-valued solution to the wave equation, and we find all such.

Key Words: harmonic morphism, harmonic map, wave equation, hyperbolic number

2000 Mathematics Subject Classification: Primary 58E20, Secondary 53C43.

1 Introduction

A C^2 map $\varphi : (M,g) \to (N,h)$ between Riemannian manifolds is called a *harmonic morphism* if, for every harmonic function $f: V \to \mathbb{R}$ from an open subset V of N with $\varphi^{-1}(V)$ non-empty, the composition $f \circ \varphi : \varphi^{-1}(V) \to \mathbb{R}$ is harmonic. It is a fundamental result of Fuglede and Ishihara [7, 10], that φ is a harmonic morphism if and only if it is both a *harmonic map* and *horizontally weakly conformal*. If we allow the metrics g and h to be indefinite, the situation becomes more subtle due to the three possible types of tangent vector that can occur: *spacelike, timelike* or *null*. However, provided sufficient care is taken over the definitions, the same characterization applies [8, 4].

In this more general setting, we say that a C^1 -map $\varphi : (M, g) \to (N, h)$ between semi-Riemannian manifolds is horizontally (weakly) conformal or semiconformal at $x \in M$ with square dilation $\Lambda(x)$ if

$$g(\mathrm{d}\varphi_x^*(U), \mathrm{d}\varphi_x^*(V)) = \Lambda(x) h(U, V) \qquad (U, V \in T_{\varphi(x)}N)$$
(1.1)

for some $\Lambda(x) \in \mathbb{R}$, where $d\varphi_x^* : T_{\varphi(x)}N \to T_xM$ denotes the adjoint of $d\varphi_x$. If φ is horizontally weakly conformal at every point, then we shall simply say that φ is horizontally weakly conformal. Note that, contrary to the Riemannian case, the function $\Lambda : M \to \mathbb{R}$ can take on nonpositive values. In fact, recall that a subspace W of T_xM is called *degenerate* if there exists a non-zero vector $v \in W$ such that g(v, w) = 0 for all $w \in W$, and null if g(v, w) = 0 for all $v, w \in W$; then we have three types of points, as follows (see [4, Proposition 14.5.4]).

 $^{^{*}}$ JCW thanks the Gulbenkian foundation, CMAF and the Faculdade de Ciências, Universidade de Lisboa, for support and hospitality during part of the preparation of this work

Proposition 1.1. Let $\varphi : (M, g) \to (N, h)$ be a C^1 horizontally weakly conformal map. Then, for each $x \in M$, precisely one of the following holds:

(i) $d\varphi_x = 0$, thus $d\varphi$ has rank 0 at x;

(ii) $\Lambda(x) \neq 0$. Then φ is submersive at x and $d\varphi_x$ maps the horizontal space $\mathcal{H}_x := (\ker d\varphi_x)^{\perp}$ conformally onto $T_{\varphi(x)}N$ with square conformality factor $\Lambda(x)$, i.e., $h(d\varphi_x(X), d\varphi_x(Y)) = \Lambda(x) g(X, Y)$ $(X, Y \in \mathcal{H}_x)$, we call x a regular point of φ ;

(iii) $\Lambda(x) = 0$ but $d\varphi_x \neq 0$. Then the vertical space $\mathcal{V}_x := \ker d\varphi_x$ is degenerate and $\mathcal{H}_x \subseteq \mathcal{V}_x$; equivalently, \mathcal{H}_x is null and non-zero. We say that x is a degenerate point of φ , or that φ is degenerate at x.

We call φ non-degenerate if it has no degenerate points, i.e., all points are of type (i) or (ii) above; this is always the case when the domain is Riemannian. Points that are not regular, i.e. points of type (i) or (iii), are called *critical points*.

Recall that a $C^2 \mod \varphi : (M,g) \to (N,h)$ is harmonic if it satisfies the harmonicity equation $\tau(\varphi) = 0$ where $\tau(\varphi) = \operatorname{Tr} \nabla d\varphi$ is the tension field of φ , see [4, Chapters 3 and 14] for an account adapted to our needs. When the domain is of Riemannian signature, the harmonicity equation is elliptic; in particular, for maps between Euclidean spaces, it is Laplace's equation. On the other hand, when (M,g) is of Lorentzian signature, the harmonicity equation is hyperbolic. In particular, recall that *m*-dimensional *Minkowski space* $\mathbb{M}^m = \mathbb{R}_1^m$ is defined to be \mathbb{R}^m endowed with the metric of signature (1,m-1) given in standard coordinates $(x_1, x_2, \ldots, x_m) \in \mathbb{R}^m$ by $g = -dx_1^2 + dx_2^2 + \ldots dx_m^2$. Then a map $\varphi : \mathbb{M}^m \to \mathbb{R}$ or \mathbb{C} is harmonic if and only if it satisfies the wave equation (1.2a) below.

Harmonic morphisms to *surfaces* are particularly nice; from the definition it is clear that the composition of such a map with a conformal or weakly conformal map of surfaces is again a harmonic morphism. In particular, the concept of harmonic morphism depends only on the conformal class of the metric on the surface; hence, when it is of Riemannian signature and oriented, we can take it to be a *Riemann surface*. A map $\varphi : \mathbb{M}^m \to N^2$ from Minkowski *m*-space to a Riemann surface is a harmonic morphism if and only if, in any local complex coordinate on N^2 , it satisfies

$$\begin{cases} (a) \quad \Box \varphi \equiv -\frac{\partial^2 \varphi}{\partial x_1^2} + \sum_{i=2}^m \frac{\partial^2 \varphi}{\partial x_i^2} &= 0, \\ (b) \quad \langle \operatorname{grad} \varphi, \operatorname{grad} \varphi \rangle_1 \equiv -\left(\frac{\partial \varphi}{\partial x_1}\right)^2 + \sum_{i=2}^m \left(\frac{\partial \varphi}{\partial x_i}\right)^2 &= 0, \end{cases}$$
(1.2)

for $(x_1, \ldots, x_m) \in U$; the second equation being the condition of horizontal weak conformality. Here \langle , \rangle_1 denotes the standard Lorentzian inner product defined for $\boldsymbol{v} = (v_1, v_2, \ldots, v_m), \, \boldsymbol{w} = (w_1, w_2, \ldots, w_m) \in \mathbb{R}^m$ by

$$\langle \boldsymbol{v}, \boldsymbol{w} \rangle_1 = -v_1 w_1 + v_2 w_2 + \ldots + v_m w_m \,.$$
 (1.3)

Harmonic morphisms from domains of Euclidean 3-space into a Riemann surface have a particularly elegant description in terms of holomorphic data [3] which we called a Weierstrass representation as the data coincides with that well-known representation of minimal surface in \mathbb{R}^3 . More precisely, the fibres of a harmonic morphism $\varphi: U \to N^2$ from a domain U of \mathbb{R}^3 with values in a Riemann surface form a foliation by line segments which determines a holomorphic curve in the mini-twistor space of all lines in \mathbb{R}^3 , a complex surface. Conversely, such a curve determines a foliation by line segments, and so a harmonic morphism, on some open subset of \mathbb{R}^3 . A detailed account of this correspondence is given in [4, Chapter 1].

From the Weierstrass representation and some geometrical arguments, one can deduce a *Bernstein* Theorem that the only harmonic morphism defined globally on \mathbb{R}^3 with values in a surface is orthogonal projection onto a two-dimensional subspace, followed by a weakly conformal map [3].

In the semi-Riemannian case, there are harmonic morphisms all of whose fibres are degenerate. For maps from a Minkowski space, we show that these are precisely null real-valued solutions of the wave equation; in Section 4, we show how to find these by the method of Collins [6].

As for higher dimensions, see [4, §6.8] for the Riemannian case. Note also that (semi-)Riemannian submersions with minimal or totally geodesic fibres are harmonic morphisms; this is a subject close to Stere Ianus's heart, for example, see [1, 11] for classifications of such maps from pseudo-hyperbolic spaces. For a study of the foliations which give rise to harmonic morphisms, see [4, 9].

$\mathbf{2}$ Harmonic morphisms from Minkowski 3-space to a Riemann surface

We begin by characterizing those submersive (and so non-degenerate) harmonic morphisms defined on open subsets of Minkowski 3-space $\mathbb{M}^3 = \mathbb{R}^3_1$ with values in a Riemann surface. All manifolds and tensors defined on them are assumed to be smooth (C^{∞}) .

Let $\varphi: U \to N^2$ be a C^2 mapping from an open subset U of \mathbb{R}^3_1 onto a 2-dimensional Riemannian manifold. Let (u, v) be isothermal coordinates on a domain of N^2 ; then u + iv gives a local complex coordinate with respect to which we write $\varphi(x_1, x_2, x_3) = \varphi_1(x_1, x_2, x_3) + i \varphi_2(x_1, x_2, x_3)$. Then, φ is a harmonic morphism if and only if it satisfies the pair of equations (1.2) with m = 3. As before, the pair is independent of the choice of isothermal coordinates; thus, for local considerations, we can suppose that φ has values in \mathbb{C} . We now examine the fibres of φ .

Lemma 2.1. Suppose that $\varphi: U \to \mathbb{C}$ is a C^2 submersive harmonic morphism from an open subset of \mathbb{R}^3_1 . Then the connected components of the fibres of φ are timelike geodesics, and so are segments of straight lines.

This follows from the immediate generalization to semi-Riemannian manifolds of the theorem of Baird and Eells [2] that a submersive harmonic morphism with values in a surface has minimal fibres.

In order to proceed, we shall suppose that $\varphi: U \to \mathbb{C}$ is a C^2 harmonic morphism from an open subset of \mathbb{R}^3_1 which satisfies the following conditions (cf. [3]):

- $\begin{cases} (a) & \varphi \text{ is submersive on } U \text{ (and so non-degenerate),} \\ (b) & \text{each fibre is connected,} \\ (c) & \text{no fibre is part of a line which passes through the origin.} \end{cases}$

Note that, given any point p where φ is submersive, by shifting the origin if necessary, we can always choose a neighbourhood U of p such that these assumptions hold.

Set $V = \varphi(U)$; note that V is open. Let ℓ be a fibre of φ , i.e. $\ell = \varphi^{-1}(z)$ for some $z \in V$. Then ℓ is a timelike line. Write $\varphi = \varphi_1 + i\varphi_2$. For each $p \in U$, orient \mathcal{H}_p so that $d\varphi_p|_{\mathcal{H}_p}$ is orientation preserving, equivalently $\{\operatorname{grad} \varphi_1, \operatorname{grad} \varphi_2\}$ is an oriented basis; then orient ℓ by choosing its unit positive tangent vector γ such that {grad φ_1 , grad φ_2 , γ } is an oriented basis. We can now proceed as for the Riemannian case, defining the fibre position vector to be the unique $c \in \mathbb{R}^3$ satisfying $\langle c, \gamma \rangle_1 = 0$ and with endpoint on ℓ ; then c is necessarily spacelike. Noting that \mathcal{H}_p is spacelike, let $J^{\mathcal{H}}$ denote rotation through $+\pi/2$ on \mathcal{H}_p and define the complex vector $\boldsymbol{\xi} = \boldsymbol{\xi}(z)$ by

$$\boldsymbol{\xi} = (\boldsymbol{c} + \mathrm{i}J^{\mathcal{H}}\boldsymbol{c}) / |\boldsymbol{c}|_{1}^{2}$$
(2.2)

where $|c|_1^2 := \langle c, c \rangle_1$. On extending the inner product \langle , \rangle_1 on \mathbb{R}^3_1 by complex-bilinearity to vectors in \mathbb{C}^3 , the equation of ℓ can be written as a single 'complex' equation:

$$\langle \boldsymbol{\xi}(z), \boldsymbol{x} \rangle_1 = 1, \quad \text{explicitly}, \quad -\xi_1 x_1 + \xi_2 x_2 + \xi_3 x_3 = 1;$$
 (2.3)

(2.1)

note that this is equivalent to the pair of real equations: $\langle \operatorname{Re} \boldsymbol{\xi}, \boldsymbol{x} \rangle_1 = 1$, $\langle \operatorname{Im} \boldsymbol{\xi}, \boldsymbol{x} \rangle_1 = 0$. From (2.2) we see that the complex vector $\boldsymbol{\xi}$ is *null* in the sense that

$$\langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle_1 = 0$$
, equivalently, $|\operatorname{Re} \boldsymbol{\xi}|_1^2 = |\operatorname{Im} \boldsymbol{\xi}|_1^2$ and $\langle \operatorname{Re} \boldsymbol{\xi}, \operatorname{Im} \boldsymbol{\xi} \rangle_1 = 0$. (2.4)

Also the Hermitian square norm $|\boldsymbol{\xi}|_1^2 := \langle \boldsymbol{\xi}, \overline{\boldsymbol{\xi}} \rangle_1 = |\operatorname{Re} \boldsymbol{\xi}|_1^2 + |\operatorname{Im} \boldsymbol{\xi}|_1^2$ satisfies $|\boldsymbol{\xi}|_1^2 = 2/|\boldsymbol{c}|_1^2$, so that we have a one-to-one correspondence between vectors $\boldsymbol{\xi} \in \mathbb{C}^3$ which satisfy (2.4) and have positive Hermitian square norm:

$$|\boldsymbol{\xi}|_{1}^{2} > 0 \tag{2.5}$$

and non-zero spacelike vectors $\boldsymbol{c} \in \mathbb{R}^3_1$; the inverse is given by

$$c = 2 \operatorname{Re} \boldsymbol{\xi} / |\boldsymbol{\xi}|_{1}^{2}$$
, so that $J^{\mathcal{H}} c = 2 \operatorname{Im} \boldsymbol{\xi} / |\boldsymbol{\xi}|_{1}^{2}$.

Now, as z varies, so does the fibre $\ell = \varphi^{-1}(z)$, so that $z \mapsto \boldsymbol{\xi}(z)$ defines a mapping on $V = \varphi(U)$. Then, just as in [4, Lemma 1.3.3], $\boldsymbol{\xi} : V \to \mathbb{C}^3$ is holomorphic, leading to the following result.

Proposition 2.2. Any C^2 harmonic morphism $\varphi : U \to \mathbb{C}$ from an open subset of \mathbb{R}^3_1 which satisfies conditions (2.1) is a solution $z = \varphi(\mathbf{x})$ to the equation (2.3) for some holomorphic map $\boldsymbol{\xi} : V \to \mathbb{C}^3$ from an open subset of \mathbb{C} which satisfies (2.4) and (2.5).

Holomorphic mappings $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) : V \to \mathbb{C}^3$ satisfying (2.4) with $\xi_2 - i\xi_3$ nowhere zero are all of the form

$$\boldsymbol{\xi} = \frac{1}{2h} \left(2g, 1 + g^2, i(1 - g^2) \right), \tag{2.6}$$

where $g, h: V \to \mathbb{C}$ are holomorphic functions, with h nowhere zero, given by $g = \xi_1/(\xi_2 - i\xi_3)$ and $h = 1/(\xi_2 - i\xi_3)$. Then the representation (2.3) takes the form

$$-2g(z)x_1 + (1+g(z)^2)x_2 + i(1-g(z)^2)x_3 = 2h(z).$$
(2.7)

A simple calculation gives $|\boldsymbol{\xi}|_1^2 = (1 - |g|^2)^2 / (4|h|^2)$, hence $|\boldsymbol{\xi}|_1^2 = 0$ if and only if |g| = 1. Now, by using equation (2.7) rather than (2.3), we can allow h to be zero; on recalling that conditions (2.1) are always satisfied locally, we obtain the following result.

Proposition 2.3. Any C^2 submersive harmonic morphism $\varphi : U \to \mathbb{C}$ from an open subset of \mathbb{R}^3_1 is locally a solution $z = \varphi(\mathbf{x})$ to (2.7) for some holomorphic maps $g, h : V \to \mathbb{C}$ defined on an open subset of \mathbb{C} with |g(z)| - 1 nowhere zero, possibly after a change of coordinates $(x_1, x_2, x_3) \mapsto (x_1, -x_2, -x_3)$. \Box

Remark 2.4. (i) The change of coordinates is only necessary to avoid having $\xi_2 - i\xi_3 = 0$ which would correspond to a pole of g. This case can be included if we allow g and h to be meromorphic, as in [4, Chapter 1].

(ii) The theorem shows that any C^2 submersive harmonic morphism defined on an open subset of \mathbb{R}^3_1 with values in a Riemann surface is, in fact, real analytic. This is false for degenerate harmonic morphisms, see below.

We can interpret g and h as in the Riemannian case: Let \times denote the cross product in \mathbb{R}^3_1 given by

$$(a_1, a_2, a_3) \times (b_1, b_2, b_3) = ((a_2b_3 - a_3b_2), -(a_3b_1 - a_1b_3), -(a_1b_2 - a_2b_1)).$$

Then a positively oriented unit vector along the line (2.7) is given by

$$\gamma(z) = \frac{\operatorname{Re} \boldsymbol{\xi} \times \operatorname{Im} \boldsymbol{\xi}}{|\operatorname{Re} \boldsymbol{\xi} \times \operatorname{Im} \boldsymbol{\xi}|} = \frac{1}{1 - |g|^2} \left(1 + |g|^2, 2g \right), \qquad (2.8)$$

so that g(z) represents the direction of the fibre over z. More precisely, let $H^2 = \{x \in \mathbb{R}^3_1 : -x_1^2 + x_2^2 + x_3^3 = -1\}$ denote the hyperbola of two sheets in \mathbb{R}^3_1 and let $\sigma : H^2 \to \mathbb{C} \cup \{\infty\} \setminus \{|z| = 1\}$ be stereographic projection from (-1, 0, 0) given by

$$\sigma(x_1, x_2, x_3) = \frac{(x_2 + ix_3)}{(1 + x_1)} = \frac{(x_1 - 1)}{(x_2 - ix_3)}.$$
(2.9)

Then, as in the Riemannian case [4, Chapter 1], $g(z) = \sigma(\gamma(z))$, and h(z) represents c(z) in the chart given by σ , that is, $h(z) = d\sigma_{\gamma(z)}(c(z))$.

Note that H^2 has two components $H^2_{\pm} = \{(x_1, x_2, x_3) \in H^2 : \pm x_1 > 0\}$ corresponding under stereographic projection to the two components of $\mathbb{C} \cup \{\infty\} \setminus \{|z| = 1\}$. If |g(z)| < 1, then $\gamma(z) \in H^2_+$ is future-pointing, and if |g(z)| > 1, then $\gamma(z) \in H^2_-$ is past-pointing.

We now obtain a converse to Proposition 2.2 as a consequence of a general construction of complexvalued harmonic morphisms due in the \mathbb{R}^3 case to Jacobi [12]. It is a semi-Riemannian version of [4, Theorem 9.2.1]. Let (M, g) be an arbitrary Riemannian or semi-Riemannian manifold; denote the corresponding inner product on TM (or its complex-bilinear extension to $T^cM = TM \otimes \mathbb{C}$) by \langle , \rangle_M , and the Laplace–Beltrami operator by Δ^M .

Proposition 2.5. Let A be an open subset of $M \times \mathbb{C}$ and let $G : A \to \mathbb{C}$, $(x, z) \mapsto G(x, z)$ be a C^2 mapping which is (i) a harmonic morphism in its first argument, i.e., for each fixed $z, x \mapsto$ $G_z(x) := G(x, z)$ is a harmonic morphism $((x, z) \in A)$; (ii) holomorphic in its second argument z. Let $\varphi : U \to \mathbb{C}$ be a C^2 solution to the equation $G(x, \varphi(x)) = \text{const.}$ on an open subset U of M, and suppose that $\text{grad} G_z(x, \varphi(x))$ is non-zero on a dense subset of U. Then φ is a harmonic morphism.

Proof: The hypothesis that G is a harmonic morphism in its first argument means that

(a)
$$\Delta^M G_z = 0$$
, (b) $\langle \operatorname{grad} G_z, \operatorname{grad} G_z \rangle_M = 0$ $((x, z) \in A)$. (2.10)

To show that φ is a harmonic morphism we must show that

(a)
$$\Delta^M \varphi = 0$$
, (b) $\langle \operatorname{grad} \varphi, \operatorname{grad} \varphi \rangle_M = 0$. (2.11)

We do this by applying the chain rule, as follows. Let $p \in U$ be a point where $\operatorname{grad} G_z$ is nonzero. Let (x^1, \ldots, x^m) be coordinates centred on p which are normal in the sense that the Christoffel symbols vanish at p. Then, on a neighbourhood of p we have $G(x^1, \ldots, x^m, \varphi(x^1, \ldots, x^m)) = \operatorname{const.}$ Differentiating this with respect to x^{α} ($\alpha \in \{1, \ldots, m\}$) gives

$$\frac{\partial G}{\partial z}\frac{\partial \varphi}{\partial x^{\alpha}} + \frac{\partial G}{\partial x^{\alpha}} = 0, \qquad (2.12)$$

hence,

$$\left(\frac{\partial G}{\partial z}\right)^2 \langle \operatorname{grad} \varphi \,,\, \operatorname{grad} \varphi \rangle_M = \langle \operatorname{grad} G_z \,,\, \operatorname{grad} G_z \rangle_M \,,$$

From (2.12) and our assumption on grad G_z it follows that $\partial G/\partial z$ is non-zero, hence (2.11b) follows from (2.10b).

Next, we differentiate (2.12) with respect to x^{β} ($\beta \in \{1, \ldots, m\}$) to give

$$\frac{\partial G}{\partial z}\frac{\partial^2 \varphi}{\partial x^\alpha \partial x^\beta} + \frac{\partial^2 G}{\partial z^2}\frac{\partial \varphi}{\partial x^\alpha}\frac{\partial \varphi}{\partial x^\beta} + \frac{\partial^2 G}{\partial z \partial x^\beta}\frac{\partial \varphi}{\partial x^\alpha} + \frac{\partial^2 G}{\partial x^\alpha \partial x^\beta} = 0$$

Since the coordinates are normal at p, on multiplying by $g^{\alpha\beta}$ and summing, we obtain at p,

$$\frac{\partial G}{\partial z}\Delta^{M}\varphi + \frac{\partial^{2}G}{\partial z^{2}}\langle \operatorname{grad}\varphi, \operatorname{grad}\varphi\rangle_{M} + g^{\alpha\beta}\frac{\partial^{2}G}{\partial z\partial x^{\beta}}\frac{\partial\varphi}{\partial x^{\alpha}} + \Delta^{M}G_{z} = 0.$$
(2.13)

From (2.10b) we have $g^{\alpha\beta} \frac{\partial G}{\partial x^{\alpha}} \frac{\partial G}{\partial x^{\beta}} = 0$. Differentiating with respect to z (and using $g^{\beta\alpha} = g^{\alpha\beta}$) gives $g^{\alpha\beta} \frac{\partial^2 G}{\partial z \partial x^{\beta}} \frac{\partial G}{\partial x^{\alpha}} = 0$. Hence, from (2.12), the third term of (2.13) vanishes; from (2.10b), so does the second, hence (2.13) reads

$$\frac{\partial G}{\partial z} \Delta^M \varphi + \Delta^M G_z = 0 \,,$$

and (2.11b) follows.

We apply this to the case of interest: $M = \mathbb{R}^3_1$.

Theorem 2.6. Let $\boldsymbol{\xi}: V \to \mathbb{C}^3$, $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3)$ be a holomorphic map from an open subset of \mathbb{C} or a Riemann surface which satisfies (2.4). Then any C^2 solution $\varphi: U \to V$, $z = \varphi(\boldsymbol{x})$ to (2.3) on an open subset U of \mathbb{R}^3_1 is a harmonic morphism of rank at least one everywhere. It is degenerate at the points of the fibres $\varphi^{-1}(z)$ for which $|\boldsymbol{\xi}(z)|_1^2 = 0$.

Conversely, every submersive C^2 harmonic morphism from an open subset of \mathbb{R}^3_1 to a Riemann surface is given this way locally, after shifting the origin if necessary.

$\mathbf{Proof:} \ \, \mathrm{Set}$

$$G(\boldsymbol{x}, \boldsymbol{z}) = \langle \boldsymbol{\xi}(\boldsymbol{z}), \, \boldsymbol{x} \rangle_1 \,. \tag{2.14}$$

Then grad $G_z = \boldsymbol{\xi}(z)$, but this is non-zero at any point $z = \varphi(\boldsymbol{x})$ by (2.3). It follows from Proposition 2.5 that φ is a harmonic morphism; from (2.12) we see that $d\varphi \neq 0$ at all points of U, so that φ has rank at least one everywhere.

Let $z \in V$. Suppose that $|\boldsymbol{\xi}(z)|_1^2 \neq 0$. Then, $\boldsymbol{\xi}(z) \neq \mathbf{0}$ so the fibre $\varphi^{-1}(z)$ is non-empty; from (2.4) we see that $\operatorname{Re} \boldsymbol{\xi}(z)$ and $\operatorname{Im} \boldsymbol{\xi}(z)$ are spacelike, orthogonal and have non-zero norm, and φ is submersive at all points on the fibre.

Suppose instead that $|\boldsymbol{\xi}(z)|_1^2 = 0$. Then from (2.4), $\operatorname{Re} \boldsymbol{\xi}(z)$ and $\operatorname{Im} \boldsymbol{\xi}(z)$ are lightlike and orthogonal and so must be linearly dependent. Hence, from (2.3), the fibre $\varphi^{-1}(z)$ is non-empty if and only if $\operatorname{Re} \boldsymbol{\xi}(z) \neq \mathbf{0}$ but $\operatorname{Im} \boldsymbol{\xi}(z) = \mathbf{0}$, in which case it is the degenerate plane $< \operatorname{Re} \boldsymbol{\xi}(z), \boldsymbol{x} >_1 = 1$, all of whose points are degenerate points of φ .

The converse follows from Proposition 2.2.

Remark 2.7. Given a holomorphic $\boldsymbol{\xi}: V \to \mathbb{C}^3$ which satisfies (2.4), as z varies, the lines (2.3) form a *congruence*, i.e., a two-parameter family of lines, which may or may not be a foliation. The proof, equation (2.12) and the implicit function theorem shows that there is a local C^2 solution $z = \varphi(\boldsymbol{x})$ to (2.3) though a point (p, z_0) if and only if $\partial G/\partial z \equiv \langle \boldsymbol{\xi}'(z), \boldsymbol{x} \rangle_1$ is non-zero at that point. Indeed, at such a point, the lines (2.3) form a foliation. If, on the other hand, $\partial G/\partial z = 0$ at (p, z_0) , then the lines (2.3) meet to first order; we call such a point an *envelope point* of the congruence.

We can give a converse to Proposition 2.3, dropping the condition $|g(z)| \neq 1$ as follows.

Corollary 2.8. Let $g, h : V \to \mathbb{C} \cup \{\infty\}$ be holomorphic maps from an open subset of \mathbb{C} (or of a Riemann surface). Then any C^2 solution $\varphi : U \to V$, $z = \varphi(x_1, x_2, x_3)$ to (2.7) is a harmonic morphism with rank at least one everywhere. Further,

(i) If $|g(z)| \neq 1$, then the fibre $\varphi^{-1}(z)$ is non-empty and φ is regular at all of its points.

(ii) If |g(z)| = 1 and h(z)/g(z) is real, then $\varphi^{-1}(z)$ is non-empty and φ is degenerate at all of its points.

(iii) If |g(z)| = 1 and h(z)/g(z) is not real, then $\varphi^{-1}(z)$ is empty.

Proof: This follows from Theorem 2.6, noting that, when |g(z)| = 1, we have $\text{Im} \boldsymbol{\xi}(z) = 0$ if and only if Im(h(z)/g(z)) = 0. Indeed, when |g(z)| = 1, writing $g(z) = e^{i\theta(z)}$ with $\theta(z) \in \mathbb{R}$, the real and imaginary parts of (2.7) read

$$\left. \begin{array}{l} \cos\theta \left(-x_1 + \cos\theta x_2 + \sin\theta x_3 \right) &= \operatorname{Re} h \\ \sin\theta \left(-x_1 + \cos\theta x_2 + \sin\theta x_3 \right) &= \operatorname{Im} h \end{array} \right\}$$

this system has a solution if and only if $h(z) = s(z) e^{i\theta(z)}$ for some $s(z) \in \mathbb{R}$, in which case $\varphi^{-1}(z)$ is the degenerate plane

$$-x_1 + \cos \theta(z) x_2 + \sin \theta(z) x_3 = s(z).$$
(2.15)

We shall see in Corollary 4.6 that all C^2 submersive harmonic morphisms which are degenerate everywhere satisfy (2.15).

In the following examples we write $q = x_2 + ix_3$.

Example 2.9. (Orthogonal projection) Define $g, h : \mathbb{C} \to \mathbb{C}$ by g(z) = 0, h(z) = z/2. Then (2.7) becomes: q = z. This defines the congruence of lines parallel to the x_1 -axis. These lines are the fibres of the globally defined harmonic morphism $\varphi : \mathbb{R}^3_1 \to \mathbb{C}$ given by $\varphi(x_1, x_2, x_3) = x_2 + ix_3$.

Example 2.10. (Radial projection) Define $g, h : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ by g(z) = z, h(z) = 0. Then (2.7) becomes

$$z^2 \overline{q} - 2z \, x_1 + q = 0 \,. \tag{2.16}$$

This has solutions

$$z_{\pm} = \left(x_1 \pm \sqrt{x_1^2 - |q|^2}\right) / \overline{q} \,. \tag{2.17}$$

Note that $|z_+||z_-| = 1$. Let $C = \{(x_1, x_2, x_3) : x_1^2 = |q|^2\}$ denote the light cone and $U = \{(x_1, x_2, x_3) : x_1^2 > |q|^2\}$ its interior. Then (2.17) defines smooth solutions $z_{\pm} : U \setminus \{(x_1, 0, 0) : x_1 \in \mathbb{R}\} \to \mathbb{C}$; on setting $z_+(x_1, 0, 0) = 0$ and $z_-(x_1, 0, 0) = \infty$ these extend to smooth solutions $z_+ : U \to D^2$, $z_- : U \to \mathbb{C} \cup \{\infty\} \setminus \overline{D^2}$, where D^2 is the open unit disc. If we now put $\varphi_{\pm} = \sigma^{-1} \circ z_{\pm}$, where σ is stereographic projection (2.9), then we obtain smooth submersive harmonic morphisms $\varphi_{\pm} : U \to H^2$ defined by

$$\varphi_{\pm} = \mp \frac{1}{\sqrt{x_1^2 - x_2^2 - x_3^2}} \left(x_1, x_2, x_3 \right)$$

Geometrically, φ_{\pm} is \mp -radial projection centred on the origin. Its fibres are the half-lines of U from the origin.

If, on the other hand, we restrict z_{\pm} to the exterior $\overline{U}^c = \{(x_1, x_2, x_3) : x_1^2 < |q|^2\}$ of the light cone, then $|z_+| = |z_-| = 1$ and we obtain everywhere-degenerate harmonic morphisms $z_{\pm} : \overline{U}^c \to S^1 \subset \mathbb{C}$. The fibres of these harmonic morphisms are degenerate planes tangent to the light cone C; each point \boldsymbol{x} of \overline{U}^c lies on two such planes, as \boldsymbol{x} approaches the light cone both of these planes tend to the tangent plane.

Example 2.11. (Disc example) Define $g, h : \mathbb{C} \to \mathbb{C}$ by g(z) = z, h(z) = iz. Then (2.7) becomes

$$z^{2}\overline{q} - 2z(\mathbf{i} + x_{1}) + q = 0.$$
(2.18)

This has solutions

$$z_{\pm} = \left(i + x_1 \pm \sqrt{(i + x_1)^2 - |q|^2}\right) / \overline{q}$$

Noting that $(i + x_1)^2 - |q|^2 = -1 - |x|_1^2 + 2ix_1$ never lies on the non-negative real axis, write

 $(\mathbf{i} + x_1)^2 - |q|^2 = r e^{\mathbf{i}\theta} \quad (r > 0, \ 0 < \theta < 2\pi);$

then on taking $\sqrt{(i+x_1)^2 - |q|^2} = \sqrt{r}e^{i\theta/2}$, we see that the maps z_{\pm} are smooth on $\mathbb{R}^3_1 \setminus \{(x_1, 0, 0)\}$. Setting $z_-(x_1, 0, 0) = 0$, $z_+(x_1, 0, 0) = \infty$ extends these to smooth harmonic morphisms $z_- : \mathbb{R}^3_1 \to D^2$ and $z_+ : \mathbb{R}^3_1 \to \mathbb{C} \cup \{\infty\} \setminus \overline{D^2}$. Note that $z_+(x_1, q) = 1/z_-(x_1, \overline{q})$, $((x_1, q) \in \mathbb{R}^3_1)$. Equation (2.18) is invariant under rotations $z \mapsto e^{i\theta}z$, $q \mapsto e^{i\theta}q$, so that it defines a congruence of lines which is rotationally symmetric about the x_1 -axis. Hence, to describe this congruence, it suffices to determine the directions of the lines through the points (0, u, 0) for u > 0. At such a point,

$$z_{\pm} = (i \pm \sqrt{-1 - u^2})/u = i(1 \pm \sqrt{1 + u^2})/u$$
.

Comparing with (2.9), we see that the direction γ of the fibre at z is given by $\gamma(z) = (\mp \sqrt{1+u^2}, 0, -u)$; this direction is perpendicular to the radius from (0, 0, 0) to (0, u, 0) and inclined at an angle

 $\arctan(u/\sqrt{1+u^2})$ (and pointing 'clockwise') to the negative (resp. positive) x_1 -axis. As u increases from 0 to ∞ , this angle increases from 0 to $\pi/4$. We thus obtain surjective submersive harmonic morphisms $z_- : \mathbb{R}^3_1 \to D^2$ and $z_+ : \mathbb{R}^3_1 \to \mathbb{C} \cup \{\infty\} \setminus \overline{D^2}$. Composing with σ^{-1} gives surjective submersive harmonic morphisms $\varphi_- : \mathbb{R}^3_1 \to H^2_+$ and $\varphi_+ : \mathbb{R}^3_1 \to H^2_-$.

Note that we may introduce a real parameter $t \neq 0$ and set h(z) = itz (with g(z) = z unchanged). This gives the same example scaled by a factor of t; as $t \to 0$, this scaled disc example tends to radial projection (Example 2.10).

Corollary 2.12. There is a globally defined surjective submersive harmonic morphism from Minkowski 3-space $\mathbb{M}^3 = \mathbb{R}^3_1$ to the unit disc.

Indeed, both the disc example and orthogonal projection (Example 2.9) define harmonic morphisms globally on Minkowski 3-space. This is in contrast to the Riemannian case, where we established a Bernstein-type theorem [3] (see also [4, Theorem 6.7.3]) that orthogonal projection is the only globally defined harmonic morphism from \mathbb{R}^3 to a surface, up to postcomposition with weakly conformal maps. Globally defined harmonic morphisms from higher-dimensional Minkowski spaces can be obtained by precomposing such harmonic morphisms with orthogonal projections $\mathbb{R}^m_1 \to \mathbb{R}^3_1$ for any m > 3.

3 Harmonic morphisms from Minkowski 3-space to a Lorentz surface

We recall some facts about hyperbolic numbers. Let $\mathbb{D} = \{(x_1, x_2) \in \mathbb{R}^2\}$ equipped with the usual coordinatewise addition, but with multiplication given by

$$(x_1, x_2) (y_1, y_2) = (x_1 y_1 + x_2 y_2, x_1 y_2 + x_2 y_1).$$

We call the commutative ring \mathbb{D} the set of *hyperbolic* or *double numbers*. Write $\mathbf{j} = (0, 1)$; then we have $(x_1, x_2) = x_1 + x_2 \mathbf{j}$ with $\mathbf{j}^2 = 1$. Note that, unlike the complex numbers, \mathbb{D} has zero divisors, namely the numbers $a(1 \pm \mathbf{j})$ ($a \in \mathbb{R}$). Multiplication by \mathbf{j} defines an involution I^D on D called the *characteristic involution*, explicitly, $I^D(x_1, x_2) = (x_2, x_1)$.

For $z = x_1 + x_2 j$, $(x_1, x_2 \in \mathbb{R})$, we write $x_1 = \operatorname{Re} z$, $x_2 = \operatorname{Im} z$ and $\overline{z} = x_1 - x_2 j$. We shall often identify $z \in \mathbb{D}$ with the point (x_1, x_2) in standard coordinates in Minkowski 2-space $\mathbb{M}^2 = \mathbb{R}^2_1$, then the standard Minkowski square norm $|z|_1^2 = \langle z, z \rangle_1 = -x_1^2 + x_2^2$ is given by $|z|_1^2 = -z\overline{z}$.

From the chain rule, we obtain

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} \right) \quad \text{and} \quad \frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x_1} - \frac{\partial}{\partial x_2} \right),$$

so that, in standard coordinates (x_1, x_2) , the Laplacian on \mathbb{M}^2 is given by

$$\Delta^{\mathbb{M}^2} = -\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} = -4\frac{\partial^2}{\partial \overline{z}\partial z} = -4\frac{\partial^2}{\partial z\partial \overline{z}} \,.$$

By analogy with the complex numbers, we say that a C^2 map $\varphi : U \to \mathbb{D}$, $w = \varphi(z)$, from an open subset of \mathbb{D} is *H*-holomorphic (resp., *H*-antiholomorphic) if we have

$$\frac{\partial w}{\partial \overline{z}} = 0 \quad \left(\text{resp.}, \ \frac{\partial w}{\partial z} = 0 \right) ;$$

equivalently, on writing $z = x_1 + x_2 j$, $w = u_1 + u_2 j$, the map φ satisfies the *H*-Cauchy-Riemann equations:

$$\frac{\partial u_1}{\partial x_1} = \frac{\partial u_2}{\partial x_2} \text{ and } \frac{\partial u_1}{\partial x_2} = \frac{\partial u_2}{\partial x_1} \quad \left(\text{resp.}, \frac{\partial u_1}{\partial x_1} = -\frac{\partial u_2}{\partial x_2} \text{ and } \frac{\partial u_1}{\partial x_1} = -\frac{\partial u_2}{\partial x_2}\right).$$

These conditions are equivalent to demanding that the differential of φ intertwine the characteristic involutions, viz., $d\varphi \circ I^D = I^D \circ d\varphi$ (resp., $d\varphi \circ I^D = -I^D \circ d\varphi$).

By a Lorentz surface, we mean a smooth surface equipped with a conformal equivalence class of Lorentzian metrics — here two metrics g, g' on N^2 are said to be conformally equivalent if $g' = \mu g$ for some (smooth) function $\mu : N^2 \to \mathbb{R} \setminus \{0\}$. Any Lorentz surface is locally conformally equivalent to 2-dimensional Minkowski space \mathbb{M}^2 , see, for example, [4]. Let $\varphi : U \to N_1^2$ be a C^2 mapping from an open subset U of \mathbb{R}^3_1 to a Lorentz surface. For local considerations, we can assume that φ has values in \mathbb{M}^2 . Then, on identifying \mathbb{M}^2 with the space \mathbb{D} of hyperbolic numbers as above and writing $\varphi = \varphi_1 + \varphi_2 \mathbf{j}$, the map φ is a harmonic morphism if and only if it satisfies equations (1.2) with m = 3, where now φ has values in \mathbb{D} .

From now on, suppose that $\varphi : U \to \mathbb{M}^2 = \mathbb{D}$ is a non-constant harmonic morphism defined on an open subset U of \mathbb{R}^3_1 . As in the last section, by a generalization of [2], its fibres are straight lines, more precisely,

Lemma 3.1. Let $p \in U$ be a point where φ is submersive. Then the connected component of the fibre of φ through p is a spacelike geodesic.

To proceed, we make the assumptions (2.1) of the previous section.

Write $V = \varphi(U)$ and let ℓ be a fibre of $\varphi : U \to \mathbb{D}$, i.e. $\ell = \varphi^{-1}(z)$ for some $z \in V$. Then, in contrast to the last section, ℓ is a *spacelike* line. Now the directions of spacelike lines are parametrized by the *pseudosphere* $S_1^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : -x_1^2 + x_2^2 + x_3^2 = 1\}$. Let ℓ have direction $\gamma \in S_1^2 \subset \mathbb{R}_1^3$. We proceed by analogy with the last section, replacing the rotation on the horizontal space by a characteristic involution.

Let $\boldsymbol{c} \in \mathbb{R}^3$ be the unique vector which satisfies $\langle \boldsymbol{c}, \boldsymbol{\gamma} \rangle_1 = 0$ and has endpoint on ℓ ; note that \boldsymbol{c} can be timelike, null or spacelike. Write $\varphi = \varphi_1 + \varphi_2 \mathbf{j}$. For each $\boldsymbol{x} \in U$, orient $\mathcal{H}_{\boldsymbol{x}}$ so that $d\varphi_{\boldsymbol{x}}|_{\mathcal{H}_{\boldsymbol{x}}}$ is orientation preserving, equivalently, $\{\operatorname{grad}\varphi_1, \operatorname{grad}\varphi_2\}$ is an oriented basis; then orient ℓ by choosing its unit positive tangent vector $\boldsymbol{\gamma}$ such that $\{\operatorname{grad}\varphi_1, \operatorname{grad}\varphi_2, \boldsymbol{\gamma}\}$ is an oriented basis. Let $I^{\mathcal{H}}$ denote the characteristic involution in the 2-plane $\mathcal{H}_{\boldsymbol{x}}$ obtained by lifting I^D from \mathbb{D} , equivalently $I^{\mathcal{H}}$ interchanges grad φ_1 and grad φ_2 . If \boldsymbol{c} is non-null (spacelike or timelike), then $|\boldsymbol{c}|_1^2 \equiv \langle \boldsymbol{c}, \boldsymbol{c} \rangle_1$ is non-zero and we may define a 'hyperbolic' vector $\boldsymbol{\xi} = \boldsymbol{\xi}(z) \in \mathbb{D}^3$ by

$$\boldsymbol{\xi} = (\boldsymbol{c} + j I^{\mathcal{H}} \boldsymbol{c}) / |\boldsymbol{c}|_{1}^{2} \,. \tag{3.1}$$

Then, in a way analogous to that in the last section, the equation of ℓ can be written as a single 'hyperbolic' equation:

$$\langle \boldsymbol{\xi}(z), \boldsymbol{x} \rangle_1 = 1; \tag{3.2}$$

this is identical to (2.3) except that the inner product \langle , \rangle_1 on \mathbb{R}^3_1 is extended by *hyperbolic* bilinearity to $\mathbb{D}^3 = \mathbb{R}^3_1 \otimes \mathbb{D}$. In the case when c is null, this equation defines a (degenerate) plane which contains

the line ℓ ; we shall discuss this case below. Again, $\boldsymbol{\xi}$ is *null* in the sense that it satisfies $\langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle_1 = 0$, explicitly (note the difference of sign to that in (2.4)),

$$|\operatorname{Re}\boldsymbol{\xi}(z)|_{1}^{2} = -|\operatorname{Im}\boldsymbol{\xi}(z)|_{1}^{2} \quad \text{and} \quad \langle \operatorname{Re}\boldsymbol{\xi}(z), \operatorname{Im}\boldsymbol{\xi}(z)\rangle_{1} = 0.$$
(3.3)

The hyperbolic square norm $|\boldsymbol{\xi}|_1^2 := \langle \boldsymbol{\xi}, \overline{\boldsymbol{\xi}} \rangle_1 = |\operatorname{Re} \boldsymbol{\xi}(z)|_1^2 - |\operatorname{Im} \boldsymbol{\xi}(z)|_1^2$ satisfies $|\boldsymbol{\xi}|_1^2 = 2/|\boldsymbol{c}|_1^2$ where $|\boldsymbol{c}|_1^2 = \langle \boldsymbol{c}, \boldsymbol{c} \rangle_1$, so that (3.1) gives a one-to-one correspondence between $\boldsymbol{\xi} \in \mathbb{D}^3$ which satisfy $\langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle_1 = 0$ and have $|\boldsymbol{\xi}|_1^2 \neq 0$ and vectors $\boldsymbol{c} \in \mathbb{R}^3_1$ which have $|\boldsymbol{c}|_1^2 \neq 0$; the inverse is given by

$$\boldsymbol{c} = 2 \operatorname{Re} \boldsymbol{\xi} / |\boldsymbol{\xi}|_{1}^{2}$$
, so that $I^{\mathcal{H}} \boldsymbol{c} = 2 \operatorname{Im} \boldsymbol{\xi} / |\boldsymbol{\xi}|_{1}^{2}$

As in the previous section, if $\varphi : U \to \mathbb{D}$ is a harmonic morphism satisfying assumptions (2.1), then $\boldsymbol{\xi} : V = \varphi(U) \to \mathbb{D}^3$ is H-holomorphic. Conversely, there is a version of Proposition 2.5 where \mathbb{C} is replaced by \mathbb{D} , but now we must impose the stronger condition that $|\text{grad } G|_1^2$ is non-zero to ensure that $\partial G/\partial z$ is not a zero divisor; applying this as before we obtain the following version of Theorem 2.6.

Theorem 3.2. Let $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) : V \to \mathbb{D}^3$ be an H-holomorphic map from an open subset of \mathbb{D} (or of a Lorentz surface) which is null: $\langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle_1 = 0$ and has non-zero hyperbolic square norm $|\boldsymbol{\xi}|_1^2$ on a dense open subset of V. Then any C^2 solution $\varphi : U \to \mathbb{M}^2 = \mathbb{D}$, $z = \varphi(\boldsymbol{x})$ on an open subset of \mathbb{R}^3_1 to equation (3.2) is a harmonic morphism.

Conversely, every C^2 submersive harmonic morphism from an open subset of \mathbb{R}^3_1 to a Lorentz surface is given this way locally, after shifting the origin if necessary.

H-holomorphic functions $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) : V \to \mathbb{D}^3$ satisfying $\langle \boldsymbol{\xi}, \boldsymbol{\xi} \rangle_1 = 0$ with $\xi_1 - \xi_2 j$ not zero and not a zero divisor are all given by

$$\boldsymbol{\xi} = \frac{1}{2h(z)} \left(-(1+g(z)^2), \, \mathbf{j}(1-g(z)^2), \, -2g(z) \right), \tag{3.4}$$

where $g,h:V\rightarrow \mathbb{D}$ $(h\neq 0)$ are H-holomorphic functions; explicitly,

$$g = \xi_3 / (\xi_1 - \xi_2 \mathbf{j}) = (\xi_1 + \xi_2 \mathbf{j}) / \xi_3 , \quad h = -1 / (\xi_1 - \xi_2 \mathbf{j}) .$$

Then the representation (3.2) takes the form

$$(1+g(z)^2)x_1 + j(1-g(z)^2)x_2 - 2g(z)x_3 = 2h(z).$$
(3.5)

From (3.4) we have $|\boldsymbol{\xi}|_1^2 = (1 - |g|^2)^2 / (4|h|^2)$; we deduce the following from Theorem 3.2.

Corollary 3.3. Let $g, h : V \to \mathbb{D}$ be *H*-holomorphic functions from an open subset of \mathbb{D} (or of a Lorentz surface) with $|g(z)| \neq 1$. Then any C^2 solution $\varphi : U \to V$, $z = \varphi(x_1, x_2, x_3)$, to (3.5) is a harmonic morphism which is not degenerate everywhere.

Conversely, any C^2 submersive harmonic morphism φ is given locally this way, possibly after a change of coordinates.

We can interpret g and h in a way analogous to previous cases. Indeed, let $\mathcal{K}^1 = \{(x_1, x_2, x_3) \in S_1^2 : x_3 = -1\}$ and $\mathcal{H}^1 = \{z \in \mathbb{D} : |z|^2 = -1\}$. Then we can identify $S_1^2 \setminus \mathcal{K}^1$ with $\mathbb{D} \setminus \mathcal{H}^1$ by stereographic projection $\sigma_H : (x_1, x_2, x_3) = (x_1 + x_2)/(1 + x_3)$. Then $g(z) = \sigma_H(\gamma(z))$ and $h(z) = (\mathrm{d}\sigma_H)_{\gamma(z)}(\mathbf{c}(z))$.

Example 3.4. (Orthogonal projection) Define $g, h : \mathbb{D} \to \mathbb{D}$ by g(z) = 0, h(z) = z/2. Then (3.5) becomes: $x_1 + x_2 \mathbf{j} = z$. This defines the congruence of lines parallel to the x_3 -axis. These lines are the fibres of the globally defined harmonic morphism $\varphi : \mathbb{M}^3 = \mathbb{R}^3_1 \to \mathbb{M}^2 = \mathbb{D}$ given by $\varphi(x_1, x_2, x_3) = x_1 + x_2 \mathbf{j}$.

Example 3.5. (Radial projection) Define $g, h : \mathbb{D} \to \mathbb{D}$ by g(z) = z, h(z) = 0. Then (3.5) becomes:

$$z^{2}(x_{1} - x_{2}j) - 2z x_{3} + (x_{1} + x_{2}j) = 0.$$
(3.6)

This can be solved on $\mathbb{R}^3_1 \setminus \{x_1 = \pm x_2\}$ to give

$$z = \frac{x_3 + \varepsilon \sqrt{-x_1^2 + x_2^2 + x_3^2}}{x_1 - x_2 \mathbf{j}} = \frac{\left(x_3 + \varepsilon \sqrt{-x_1^2 + x_2^2 + x_3^2}\right) \left(x_1 + x_2 \mathbf{j}\right)}{x_1^2 - x_2^2};$$

here we set $\varepsilon = \pm 1, \pm j$ to get all possible square roots in \mathbb{D} . Note that on the *exterior* $\overline{U}^c = \{(x_1, x_2, x_3) \in \mathbb{D} : -x_1^2 + x_2^2 + x_3^2 > 0\}$ of the light cone C, taking $\varepsilon = \pm 1$ gives two smooth harmonic morphisms $z_{\pm} : \overline{U}^c \setminus \{x_1 = \pm x_2\} \to \mathbb{M}^2$, which can be interpreted as compositions $z_{\pm} = \sigma_H \circ \varphi_{\pm}$, where φ_{\pm} is the restriction to $\overline{U}^c \setminus \{x_1 = \pm x_2\}$ of radial projection (or its negative) $\overline{U}^c \to S_1^2$:

$$\boldsymbol{x} = (x_1, x_2, x_2) \mapsto \mp \frac{\boldsymbol{x}}{\sqrt{|\boldsymbol{x}|_1^2}} = \mp \frac{1}{\sqrt{-x_1^2 + x_2^2 + x_3^2}} (x_1, x_2, x_3).$$

When $\boldsymbol{x} \in C$, (3.5) has repeated solutions z and the fibre through \boldsymbol{x} is the (degenerate) tangent plane to C at that point. Note that both \mathbb{M}^2 and S_1^2 have conformal compactification given by a quadric Q_1^2 in $\mathbb{R}P^3$, see [4, Example 14.1.22]; as \boldsymbol{x} approaches a point on C, $\varphi_{\pm}(\boldsymbol{x})$ tends to a point at infinity of S_1^2 in Q_1^2 , and the harmonic morphism can be regarded as having values in Q_1^2 .

When x lies inside the light cone there is no value of $z \in \mathbb{M}^2$ satisfying (3.5) (contrast with Example 2.10).

Alternatively, we can take $\varepsilon = \pm j$ to get the other two values of the square root, in which case

$$z_{\pm} = \frac{x_3 \pm \left(\sqrt{-x_1^2 + x_2^2 + x_3^2}\right)j}{x_1 - x_2 j} = \frac{x_1 + x_2 j}{x_3 \mp \left(\sqrt{-x_1^2 + x_2^2 + x_3^2}\right)j} \,.$$

Then $|z_{\pm}|_1^2 = -1$ and z_{\pm} is an everywhere-degenerate harmonic morphism $\overline{U}^c \setminus \{x_1 \pm x_2\} \to \mathbb{M}^2$ with values on the hyperbola \mathcal{H}^1 . The fibres of these harmonic morphisms are the degenerate tangent planes to the light cone C. As \boldsymbol{x} tends to a point in the set $\{x_1 = \pm x_2\}$, z_{\pm} tends to the point at infinity on the hyperbola and we can regard z_{\pm} as extending to an everywhere-degenerate harmonic morphism from \overline{U}^c to the compactification Q_1^2 of \mathbb{M}^2 .

Example 3.6. (Disc example) Define $g, h : \mathbb{D} \to \mathbb{D}$ by g(z) = z, h(z) = zj. Then (3.5) becomes

$$z^{2}(x_{1} - x_{2}j) - 2z(x_{3} + j) + x_{1} + x_{2}j = 0.$$
(3.7)

This can be solved on $\mathbb{R}^3_1 \setminus \{x_1 = \pm x_2\}$ to give

The square root is smooth on the region W where $\eta_1 = -x_1^2 + x_2^2 + x_3^2 + 1 + 2x_3$ and $\eta_2 = -x_1^2 + x_2^2 + x_3^2 + 1 - 2x_3$ are both positive, this is given by $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : (1 - |x_3|)^2 - x_1^2 + x_2^2 > 0\}$. Then on $W \setminus \{x_1 = \pm x_2\}$ we can compute the square root to give

$$z_{\varepsilon} = \frac{x_3 + j + \varepsilon \left\{ \frac{1}{2} (\sqrt{\eta_1} + \sqrt{\eta_2}) + \frac{1}{2} (\sqrt{\eta_1} - \sqrt{\eta_2}) j \right\}}{x_1 - x_2 j} \qquad (\varepsilon = \pm 1, \pm j)$$

In order to describe these harmonic morphisms geometrically, first take $\varepsilon = 1$. Then at a point $(x_1, x_2, x_3) = (u, 0, 0)$, with |u| < 1 so that it lies in W, we have $z_1 = (j + \sqrt{1 - u^2})/u$ and so γ consists of multiples of the vectors $(\sqrt{1 - u^2}, 1, 0)$; it is easily seen that the fibres of z_1 are tangent to the hyperbola: $x_1^2 - x_2^2 = 1$, $x_3 = 0$. As x_3 increases from 0, the lines start tilting.

With $\varepsilon = \mathbf{j}$, we find that, at $(x_1, x_2, 0)$,

$$z_{j} = \frac{j + (\sqrt{1 - x_{1}^{2} + x_{2}^{2}})j}{x_{1} - x_{2}j}$$

and γ consists of multiples of the vectors $(x_2, x_1, -\sqrt{1-r^2})$ if $x_1^2 > x_2^2$, and $(x_2, x_1, -1)$ if $x_1^2 < x_2^2$, where $r^2 = -x_1^2 + x_2^2$. Thus, at any point $P(x_1, x_2, 0)$, the fibre is perpendicular in a Lorentzian sense to the radius OP; as P travels along the radius from O, it starts vertically down and then swivels until it is horizontal *either* when it hits the hyperbola: $x_1^2 - x_2^2 = 1$, $x_3 = 0$ (i.e. if $x_1^2 > x_2^2$), or, if it avoids the hyperbola (i.e. if $x_1^2 < x_2^2$), at infinity. It is thus a hyperbolic analogue of the disc example that occurs in the Riemannian case [4, Example 1.5.3]. Note that since (3.7) is invariant under the change of coordinates $(x_1, x_2, x_3, z) \mapsto (x_1, -x_2, x_3, 1/z)$, the cases $\varepsilon = -1$, -j are equivalent to the above cases.

Note that, as in Example 2.11 we may introduce a real parameter $t \neq 0$ and set h = tzj (with g = z unchanged); this gives the same example scaled by a factor of t. Again, as $t \to 0$, this scaled disc example tends to radial projection (Example 3.5).

4 Degenerate harmonic morphisms on Minkowski spaces

By definition (see the Introduction), a C^1 horizontally weakly conformal map is degenerate at a point x if and only if the kernel of $d\varphi_x$ is degenerate. It follows [4, Remark 14.5.5] that an everywhere-degenerate harmonic morphism φ from a Lorentzian manifold M_1^m to an arbitrary semi-Riemannian manifold N necessarily has rank one everywhere; further, by [4, Proposition 14.5.8], it factors locally into the composition of an everywhere-degenerate harmonic morphism from M_1^m to \mathbb{R} and an immersion of \mathbb{R} into N. Hence, to determine all such φ , it suffices to take $N = \mathbb{R}$. In the case that M_1^m is an open subset U of m-dimensional Minkowski space $\mathbb{M}^m = \mathbb{R}_1^m$, an everywhere-degenerate harmonic morphism is just a null real-valued solution of the wave equation, i.e. a solution $\varphi : U \to \mathbb{R}$ of the system (1.2).

To solve this problem, we need the following version of Proposition 2.5; note that it is empty if M is Riemannian. As the proof uses the same calculations, we omit it.

Proposition 4.1. Let M be an arbitrary semi-Riemannian manifold. Let A be an open subset of $M \times \mathbb{R}$ and let $G : A \to \mathbb{R}$, $(x, z) \mapsto G(x, z)$, be a C^2 mapping which is an everywhere-degenerate harmonic morphism in its first argument, i.e., writing $G_z(x) = G(x, z)$,

(a)
$$\Delta^M G_z = 0$$
, (b) $\langle \operatorname{grad} G_z, \operatorname{grad} G_z \rangle_M = 0$ $((x, z) \in A)$. (4.1)

Let $\varphi : U \to \mathbb{C}$ be a C^2 solution to equation $G(x, \varphi(x)) = \text{const.}$ on an open subset U of M and suppose that $\operatorname{grad} G_z(x, \varphi(x))$ is non-zero on a dense subset of U. Then φ is an everywhere-degenerate harmonic morphism, i.e., it satisfies the system

(a)
$$\Delta^M \varphi = 0$$
, (b) $\langle \operatorname{grad} \varphi, \operatorname{grad} \varphi \rangle_M = 0$. (4.2)

In the Lorentzian case this gives

Lemma 4.2. Let $\varphi(x_1, x_2, \ldots, x_m)$ satisfy

$$\tau(\varphi(x_1, x_2, \dots, x_m), x_2, \dots, x_m) = x_1.$$
 (4.3)

Then φ satisfies the system

(a)
$$\Box \varphi = 0$$
, (b) $\langle \operatorname{grad} \varphi, \operatorname{grad} \varphi \rangle_1 = 0$ (4.4)

if and only if, for each fixed x_1 , τ satisfies the system

(a)
$$\Delta^{\mathbb{R}^{m-1}}\tau = 0$$
, (b) $\langle \operatorname{grad} \tau, \operatorname{grad} \tau \rangle_{\mathbb{R}^{m-1}} = 1$; (4.5)

that is, φ is a null solution to the wave equation if and only if, on each slice $x_1 = \text{const.}$, τ is a harmonic function with $|\text{grad } \tau|^2 = 1$.

Proof: Set $G(\varphi, x_1, x_2, \ldots, x_m) = \tau(\varphi, x_2, \ldots, x_m) - x_1$. Then

$$\left(\frac{\partial G}{\partial x_1}, \frac{\partial G}{\partial x_2}, \dots, \frac{\partial G}{\partial x_m}\right) = \left(-1, \frac{\partial \tau}{\partial x_2}, \dots, \frac{\partial \tau}{\partial x_m}\right)$$

so that

$$\langle \operatorname{grad} G, \operatorname{grad} G \rangle_1 = \langle \operatorname{grad} \tau, \operatorname{grad} \tau \rangle_{\mathbb{R}^{m-1}} - 1$$
 and
 $\Box G \equiv \Delta^{\mathbb{M}^m} G = \Delta^{\mathbb{R}^{m-1}} \tau.$

The result follows.

Solutions of the system (4.5) are easy to find, as follows.

Lemma 4.3. Any C^2 solution $\varphi: U \to \mathbb{R}$ on an open subset of \mathbb{R}^{m-1} to the system (4.5) is affine, *i.e.*,

$$\tau(x_2, \dots, x_m) = \ell_1 + \sum_{i=2}^m \ell_i x_i$$
 (4.6)

for some constants $\ell_1, \ell_2, \ldots, \ell_m$ with $\sum_{i=2}^m \ell_i^2 = 1$.

Proof: Since τ is harmonic, it is smooth. Set $T = \text{grad } \tau : U \to \mathbb{R}^m$. Then T is harmonic and has image in the unit sphere. By the maximum principle, T is constant. Indeed, choose any point $p \in U$ and set $\ell = T(p)$. Then the function $\mathbf{x} \mapsto \langle T(\mathbf{x}), \ell \rangle$ is harmonic and has a maximum at p and so is constant. Integrating yields (4.6).

We deduce the following result.

Theorem 4.4. (Collins [6]) Let $\varphi : U \to \mathbb{R}$ be a null C^2 solution to the wave equation, i.e. a solution to (4.4), on an open set of \mathbb{M}^m . Suppose that $\partial \varphi / \partial x_1 \neq 0$. Then, locally, $z = \varphi(x_1, \ldots, x_m)$ satisfies

$$\ell_1(z) + \sum_{i=2}^m \ell_i(z) x_i = x_1 \tag{4.7}$$

for some C^2 functions $\ell_1, \ell_2, \ldots, \ell_m : V \to \mathbb{R}$ defined on an open subset of \mathbb{R} with $\sum_{i=2}^m \ell_i^2 = 1$. Conversely, any C^2 solution to (4.7) is a null solution to the wave equation.

Proof: By the implicit function theorem we can solve $\varphi(x_1, x_2, \ldots, x_m) = z$ to give

$$x_1 = \tau(z, x_2, \dots, x_m).$$
 (4.8)

Then, by Lemma 4.2, on each slice $x_1 = \text{const.}$, τ satisfies (4.5). By Lemma 4.3, $\tau|_{x_1=\text{const.}}$ is affine, thus,

$$\tau(z, x_2, \dots, x_m) = \ell_1(z) + \sum_{i=2}^m \ell_i(z) x_i$$

with $\sum_{i=2}^{m} \ell_i^2 = 1$. Then (4.8) yields (4.7).

Corollary 4.5. The level sets of a C^2 null solution to the wave equation are degenerate hyperplanes. \Box

Corollary 4.6. Any C^2 harmonic morphism $\varphi : U \to \mathbb{R}$, $z = \varphi(x_1, x_2, x_3)$ from an open subset of $\mathbb{M}^3 = \mathbb{R}^3_1$ which is submersive and degenerate everywhere is locally the solution to an equation

$$-x_1 + \cos \theta(z) \, x_2 + \sin \theta(z) \, x_3 = r(z) \,, \tag{4.9}$$

for some C^2 functions $\theta, r: V \to \mathbb{R}$ defined on an open subset of \mathbb{R} .

Conversely, any C^2 solution to this equation on an open subset of \mathbb{R}^3_1 is a harmonic morphism which is degenerate everywhere.

References

- G. BĂDIŢOIU AND S. IANUŞ, Semi-Riemannian submersions from real and complex pseudohyperbolic spaces, Differential Geom. Appl. 16 (2002), 79–94.
- [2] P. BAIRD AND J. EELLS, A conservation law for harmonic maps, Geometry Symposium (Utrecht, 1980), Lecture Notes in Mathematics, vol 894 (1981), 1–25.
- [3] P. BAIRD AND J. C. WOOD, Bernstein theorems for harmonic morphisms from ℝ³ and S³, Math. Ann., 280 (1988), 579–603.
- [4] P. BAIRD AND J.C. WOOD, Harmonic Morphisms between Riemannian Manifolds, London Math. Soc. Monograph, New Series, vol. 29, Oxford University Press 2003; see http://www.maths.leeds.ac.uk/Pure/staff/wood/BWBook/BWBook.html for details and list of corrections.
- [5] P. BAIRD AND J. C. WOOD, Harmonic morphisms and shear-free ray congruences, Bull. Belg. Math. Soc. 5 (1998), 549-564; for a revised and expanded version, see http://www.maths.leeds.ac.uk/Pure/staff/wood/BWBook/BWBook.html
- [6] C.B. COLLINS, Complex potential equations I. A technique for solution, Math. Proc. Cambridge Philos. Soc., 80 (1976), 165–187.
- [7] B. FUGLEDE, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (2), (1978), 107–144.
- [8] B. FUGLEDE, Harmonic morphisms between semi-Riemannian manifolds, Acad. Sci. Fenn., 21, (1996), 31–50.
- [9] S. IANUŞ AND A.M. PASTORE, Some foliations and harmonic morphisms, Rev. Roumaine Math. Pures Appl. 50 (2005), 671–676.
- [10] T. ISHIHARA, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19, (1979), 215–229.
- [11] M. FALCITELLI, S. IANUŞ AND A.M. PASTORE, *Riemannian submersions and related topics*, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
- [12] C.G.J. JACOBI, Über eine Lösung der partiellen Differentialgleichung $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$, J. Reine Angew. Math., **36** (1848), 113–134.

Received: 23.01.2009.

Département de Mathématiques, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, 29285 Brest, France E-mail: Paul.Baird@univ-brest.fr

Department of Pure Mathematics, University of Leeds Leeds LS2 9JT, Great Britain E-mail: j.c.wood@leeds.ac.uk