Harmonic morphisms from Minkowski space and hyperbolic numbers

by
Paul Baird and John C. Wood*
To Professor S. Ianus on the occasion of his 70th Birthday

Abstract

We show that all harmonic morphisms from 3-dimensional Minkowski space with values in a surface have a Weierstrass representation involving the complex numbers or the hyperbolic numbers depending on the signature of the codomain. We deduce that there is a non-trivial globally defined submersive harmonic morphism from Minkowski 3-space to a surface, in contrast to the Riemannian case. We show that a degenerate harmonic morphism on a Minkowski space is precisely a null real-valued solution to the wave equation, and we find all such.

Key Words: harmonic morphism, harmonic map, wave equation, hyperbolic number
2000 Mathematics Subject Classification: Primary 58E20, Secondary 53C43.

1 Introduction

A $C^{2} \operatorname{map} \varphi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds is called a harmonic morphism if, for every harmonic function $f: V \rightarrow \mathbb{R}$ from an open subset V of N with $\varphi^{-1}(V)$ non-empty, the composition $f \circ \varphi: \varphi^{-1}(V) \rightarrow \mathbb{R}$ is harmonic. It is a fundamental result of Fuglede and Ishihara [7, 10], that φ is a harmonic morphism if and only if it is both a harmonic map and horizontally weakly conformal. If we allow the metrics g and h to be indefinite, the situation becomes more subtle due to the three possible types of tangent vector that can occur: spacelike, timelike or null. However, provided sufficient care is taken over the definitions, the same characterization applies [8, 4].

In this more general setting, we say that a C^{1}-map $\varphi:(M, g) \rightarrow(N, h)$ between semi-Riemannian manifolds is horizontally (weakly) conformal or semiconformal at $x \in M$ with square dilation $\Lambda(x)$ if

$$
\begin{equation*}
g\left(\mathrm{~d} \varphi_{x}^{*}(U), \mathrm{d} \varphi_{x}^{*}(V)\right)=\Lambda(x) h(U, V) \quad\left(U, V \in T_{\varphi(x)} N\right) \tag{1.1}
\end{equation*}
$$

for some $\Lambda(x) \in \mathbb{R}$, where $\mathrm{d} \varphi_{x}^{*}: T_{\varphi(x)} N \rightarrow T_{x} M$ denotes the adjoint of $\mathrm{d} \varphi_{x}$. If φ is horizontally weakly conformal at every point, then we shall simply say that φ is horizontally weakly conformal. Note that, contrary to the Riemannian case, the function $\Lambda: M \rightarrow \mathbb{R}$ can take on nonpositive values. In fact, recall that a subspace W of $T_{x} M$ is called degenerate if there exists a non-zero vector $v \in W$ such that $g(v, w)=0$ for all $w \in W$, and null if $g(v, w)=0$ for all $v, w \in W$; then we have three types of points, as follows (see [4, Proposition 14.5.4]).

[^0]Proposition 1.1. Let $\varphi:(M, g) \rightarrow(N, h)$ be a C^{1} horizontally weakly conformal map. Then, for each $x \in M$, precisely one of the following holds:
(i) $\mathrm{d} \varphi_{x}=0$, thus $\mathrm{d} \varphi$ has rank 0 at x;
(ii) $\Lambda(x) \neq 0$. Then φ is submersive at x and $\mathrm{d} \varphi_{x}$ maps the horizontal space $\mathcal{H}_{x}:=\left(\operatorname{ker} \mathrm{d} \varphi_{x}\right)^{\perp}$ conformally onto $T_{\varphi(x)} N$ with square conformality factor $\Lambda(x)$, i.e., $h\left(\mathrm{~d} \varphi_{x}(X), \mathrm{d} \varphi_{x}(Y)\right)=\Lambda(x) g(X, Y)$ $\left(X, Y \in \mathcal{H}_{x}\right)$, we call x a regular point of φ;
(iii) $\Lambda(x)=0$ but $\mathrm{d} \varphi_{x} \neq 0$. Then the vertical space $\mathcal{V}_{x}:=\operatorname{ker} \mathrm{d} \varphi_{x}$ is degenerate and $\mathcal{H}_{x} \subseteq \mathcal{V}_{x}$; equivalently, \mathcal{H}_{x} is null and non-zero. We say that x is a degenerate point of φ, or that φ is degenerate at x.

We call φ non-degenerate if it has no degenerate points, i.e., all points are of type (i) or (ii) above; this is always the case when the domain is Riemannian. Points that are not regular, i.e. points of type (i) or (iii), are called critical points.

Recall that a C^{2} map $\varphi:(M, g) \rightarrow(N, h)$ is harmonic if it satisfies the harmonicity equation $\tau(\varphi)=0$ where $\tau(\varphi)=\operatorname{Tr} \nabla \mathrm{d} \varphi$ is the tension field of φ, see [4, Chapters 3 and 14] for an account adapted to our needs. When the domain is of Riemannian signature, the harmonicity equation is elliptic; in particular, for maps between Euclidean spaces, it is Laplace's equation. On the other hand, when (M, g) is of Lorentzian signature, the harmonicity equation is hyperbolic. In particular, recall that m-dimensional Minkowski space $\mathbb{M}^{m}=\mathbb{R}_{1}^{m}$ is defined to be \mathbb{R}^{m} endowed with the metric of signature $(1, m-1)$ given in standard coordinates $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ by $g=-\mathrm{d} x_{1}^{2}+\mathrm{d} x_{2}^{2}+\ldots \mathrm{d} x_{m}^{2}$. Then a map $\varphi: \mathbb{M}^{m} \rightarrow \mathbb{R}$ or \mathbb{C} is harmonic if and only if it satisfies the wave equation (1.2a) below.

Harmonic morphisms to surfaces are particularly nice; from the definition it is clear that the composition of such a map with a conformal or weakly conformal map of surfaces is again a harmonic morphism. In particular, the concept of harmonic morphism depends only on the conformal class of the metric on the surface; hence, when it is of Riemannian signature and oriented, we can take it to be a Riemann surface. A map $\varphi: \mathbb{M}^{m} \rightarrow N^{2}$ from Minkowski m-space to a Riemann surface is a harmonic morphism if and only if, in any local complex coordinate on N^{2}, it satisfies

$$
\left\{\begin{align*}
\text { (a) } \square \varphi \equiv-\frac{\partial^{2} \varphi}{\partial x_{1}{ }^{2}}+\sum_{i=2}^{m} \frac{\partial^{2} \varphi}{\partial x_{i}{ }^{2}} & =0 \tag{1.2}\\
\text { (b) }\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{1} \equiv-\left(\frac{\partial \varphi}{\partial x_{1}}\right)^{2}+\sum_{i=2}^{m}\left(\frac{\partial \varphi}{\partial x_{i}}\right)^{2} & =0
\end{align*}\right.
$$

for $\left(x_{1}, \ldots, x_{m}\right) \in U$; the second equation being the condition of horizontal weak conformality. Here \langle,\rangle_{1} denotes the standard Lorentzian inner product defined for $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{m}\right), \boldsymbol{w}=\left(w_{1}, w_{2}, \ldots\right.$, $\left.w_{m}\right) \in \mathbb{R}^{m}$ by

$$
\begin{equation*}
\langle\boldsymbol{v}, \boldsymbol{w}\rangle_{1}=-v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{m} w_{m} \tag{1.3}
\end{equation*}
$$

Harmonic morphisms from domains of Euclidean 3-space into a Riemann surface have a particularly elegant description in terms of holomorphic data [3] which we called a Weierstrass representation as the data coincides with that well-known representation of minimal surface in \mathbb{R}^{3}. More precisely, the fibres of a harmonic morphism $\varphi: U \rightarrow N^{2}$ from a domain U of \mathbb{R}^{3} with values in a Riemann surface form a foliation by line segments which determines a holomorphic curve in the mini-twistor space of all lines in \mathbb{R}^{3}, a complex surface. Conversely, such a curve determines a foliation by line segments, and so a harmonic morphism, on some open subset of \mathbb{R}^{3}. A detailed account of this correspondence is given in [4, Chapter 1].

From the Weierstrass representation and some geometrical arguments, one can deduce a Bernstein Theorem that the only harmonic morphism defined globally on \mathbb{R}^{3} with values in a surface is orthogonal projection onto a two-dimensional subspace, followed by a weakly conformal map [3].

In the semi-Riemannian case, there are harmonic morphisms all of whose fibres are degenerate. For maps from a Minkowski space, we show that these are precisely null real-valued solutions of the wave equation; in Section 4, we show how to find these by the method of Collins [6].

As for higher dimensions, see [4, §6.8] for the Riemannian case. Note also that (semi-)Riemannian submersions with minimal or totally geodesic fibres are harmonic morphisms; this is a subject close to Stere Ianuş's heart, for example, see [1, 11] for classifications of such maps from pseudo-hyperbolic spaces. For a study of the foliations which give rise to harmonic morphisms, see [4, 9].

2 Harmonic morphisms from Minkowski 3-space to a Riemann surface

We begin by characterizing those submersive (and so non-degenerate) harmonic morphisms defined on open subsets of Minkowski 3-space $\mathbb{M}^{3}=\mathbb{R}_{1}^{3}$ with values in a Riemann surface. All manifolds and tensors defined on them are assumed to be smooth $\left(C^{\infty}\right)$.

Let $\varphi: U \rightarrow N^{2}$ be a C^{2} mapping from an open subset U of \mathbb{R}_{1}^{3} onto a 2-dimensional Riemannian manifold. Let (u, v) be isothermal coordinates on a domain of N^{2}; then $u+\mathrm{i} v$ gives a local complex coordinate with respect to which we write $\varphi\left(x_{1}, x_{2}, x_{3}\right)=\varphi_{1}\left(x_{1}, x_{2}, x_{3}\right)+\mathrm{i} \varphi_{2}\left(x_{1}, x_{2}, x_{3}\right)$. Then, φ is a harmonic morphism if and only if it satisfies the pair of equations (1.2) with $m=3$. As before, the pair is independent of the choice of isothermal coordinates; thus, for local considerations, we can suppose that φ has values in \mathbb{C}. We now examine the fibres of φ.

Lemma 2.1. Suppose that $\varphi: U \rightarrow \mathbb{C}$ is a C^{2} submersive harmonic morphism from an open subset of \mathbb{R}_{1}^{3}. Then the connected components of the fibres of φ are timelike geodesics, and so are segments of straight lines.

This follows from the immediate generalization to semi-Riemannian manifolds of the theorem of Baird and Eells [2] that a submersive harmonic morphism with values in a surface has minimal fibres.

In order to proceed, we shall suppose that $\varphi: U \rightarrow \mathbb{C}$ is a C^{2} harmonic morphism from an open subset of \mathbb{R}_{1}^{3} which satisfies the following conditions (cf. [3]):

$$
\left\{\begin{array}{l}
\text { (a) } \varphi \text { is submersive on } U \text { (and so non-degenerate), } \\
\text { (b) each fibre is connected, } \tag{2.1}\\
\text { (c) no fibre is part of a line which passes through the origin. }
\end{array}\right.
$$

Note that, given any point p where φ is submersive, by shifting the origin if necessary, we can always choose a neighbourhood U of p such that these assumptions hold.

Set $V=\varphi(U)$; note that V is open. Let ℓ be a fibre of φ, i.e. $\ell=\varphi^{-1}(z)$ for some $z \in V$. Then ℓ is a timelike line. Write $\varphi=\varphi_{1}+\mathrm{i} \varphi_{2}$. For each $p \in U$, orient \mathcal{H}_{p} so that $\left.\mathrm{d} \varphi_{p}\right|_{\mathcal{H}_{p}}$ is orientation preserving, equivalently $\left\{\operatorname{grad} \varphi_{1}, \operatorname{grad} \varphi_{2}\right\}$ is an oriented basis; then orient ℓ by choosing its unit positive tangent vector γ such that $\left\{\operatorname{grad} \varphi_{1}, \operatorname{grad} \varphi_{2}, \gamma\right\}$ is an oriented basis. We can now proceed as for the Riemannian case, defining the fibre position vector to be the unique $\boldsymbol{c} \in \mathbb{R}^{3}$ satisfying $\langle\boldsymbol{c}, \gamma\rangle_{1}=0$ and with endpoint on ℓ; then \boldsymbol{c} is necessarily spacelike. Noting that \mathcal{H}_{p} is spacelike, let $J^{\mathcal{H} \mathcal{H}}$ denote rotation through $+\pi / 2$ on \mathcal{H}_{p} and define the complex vector $\boldsymbol{\xi}=\boldsymbol{\xi}(z)$ by

$$
\begin{equation*}
\boldsymbol{\xi}=\left(\boldsymbol{c}+\mathrm{i} J^{\mathcal{H}} \boldsymbol{c}\right) /|\boldsymbol{c}|_{1}^{2} \tag{2.2}
\end{equation*}
$$

where $|\boldsymbol{c}|_{1}^{2}:=\langle\boldsymbol{c}, \boldsymbol{c}\rangle_{1}$. On extending the inner product \langle,\rangle_{1} on \mathbb{R}_{1}^{3} by complex-bilinearity to vectors in \mathbb{C}^{3}, the equation of ℓ can be written as a single 'complex' equation:

$$
\begin{equation*}
\langle\boldsymbol{\xi}(z), \boldsymbol{x}\rangle_{1}=1, \quad \text { explicitly, } \quad-\xi_{1} x_{1}+\xi_{2} x_{2}+\xi_{3} x_{3}=1 ; \tag{2.3}
\end{equation*}
$$

note that this is equivalent to the pair of real equations: $\langle\operatorname{Re} \boldsymbol{\xi}, \boldsymbol{x}\rangle_{1}=1,\langle\operatorname{Im} \boldsymbol{\xi}, \boldsymbol{x}\rangle_{1}=0$. From (2.2) we see that the complex vector $\boldsymbol{\xi}$ is null in the sense that

$$
\begin{equation*}
\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle_{1}=0, \quad \text { equivalently, } \quad|\operatorname{Re} \boldsymbol{\xi}|_{1}^{2}=|\operatorname{Im} \boldsymbol{\xi}|_{1}^{2} \text { and }\langle\operatorname{Re} \boldsymbol{\xi}, \operatorname{Im} \boldsymbol{\xi}\rangle_{1}=0 \tag{2.4}
\end{equation*}
$$

Also the Hermitian square norm $|\boldsymbol{\xi}|_{1}^{2}:=\langle\boldsymbol{\xi}, \overline{\boldsymbol{\xi}}\rangle_{1}=|\operatorname{Re} \boldsymbol{\xi}|_{1}^{2}+|\operatorname{Im} \boldsymbol{\xi}|_{1}^{2}$ satisfies $|\boldsymbol{\xi}|_{1}^{2}=2 /|\boldsymbol{c}|_{1}^{2}$, so that we have a one-to-one correspondence between vectors $\boldsymbol{\xi} \in \mathbb{C}^{3}$ which satisfy (2.4) and have positive Hermitian square norm:

$$
\begin{equation*}
|\boldsymbol{\xi}|_{1}^{2}>0 \tag{2.5}
\end{equation*}
$$

and non-zero spacelike vectors $\boldsymbol{c} \in \mathbb{R}_{1}^{3}$; the inverse is given by

$$
\boldsymbol{c}=2 \operatorname{Re} \boldsymbol{\xi} /|\boldsymbol{\xi}|_{1}^{2}, \quad \text { so that } \quad J^{\mathcal{H}} \boldsymbol{c}=2 \operatorname{Im} \boldsymbol{\xi} /|\boldsymbol{\xi}|_{1}^{2} .
$$

Now, as z varies, so does the fibre $\ell=\varphi^{-1}(z)$, so that $z \mapsto \boldsymbol{\xi}(z)$ defines a mapping on $V=\varphi(U)$. Then, just as in [4, Lemma 1.3.3], $\boldsymbol{\xi}: V \rightarrow \mathbb{C}^{3}$ is holomorphic, leading to the following result.

Proposition 2.2. Any C^{2} harmonic morphism $\varphi: U \rightarrow \mathbb{C}$ from an open subset of \mathbb{R}_{1}^{3} which satisfies conditions (2.1) is a solution $z=\varphi(\boldsymbol{x})$ to the equation (2.3) for some holomorphic map $\boldsymbol{\xi}: V \rightarrow \mathbb{C}^{3}$ from an open subset of \mathbb{C} which satisfies (2.4) and (2.5).

Holomorphic mappings $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right): V \rightarrow \mathbb{C}^{3}$ satisfying (2.4) with $\xi_{2}-\mathrm{i} \xi_{3}$ nowhere zero are all of the form

$$
\begin{equation*}
\boldsymbol{\xi}=\frac{1}{2 h}\left(2 g, 1+g^{2}, \mathrm{i}\left(1-g^{2}\right)\right), \tag{2.6}
\end{equation*}
$$

where $g, h: V \rightarrow \mathbb{C}$ are holomorphic functions, with h nowhere zero, given by $g=\xi_{1} /\left(\xi_{2}-\mathrm{i} \xi_{3}\right)$ and $h=1 /\left(\xi_{2}-\mathrm{i} \xi_{3}\right)$. Then the representation (2.3) takes the form

$$
\begin{equation*}
-2 g(z) x_{1}+\left(1+g(z)^{2}\right) x_{2}+\mathrm{i}\left(1-g(z)^{2}\right) x_{3}=2 h(z) \tag{2.7}
\end{equation*}
$$

A simple calculation gives $|\boldsymbol{\xi}|_{1}^{2}=\left(1-|g|^{2}\right)^{2} /\left(4|h|^{2}\right)$, hence $|\boldsymbol{\xi}|_{1}^{2}=0$ if and only if $|g|=1$. Now, by using equation (2.7) rather than (2.3), we can allow h to be zero; on recalling that conditions (2.1) are always satisfied locally, we obtain the following result.

Proposition 2.3. Any C^{2} submersive harmonic morphism $\varphi: U \rightarrow \mathbb{C}$ from an open subset of \mathbb{R}_{1}^{3} is locally a solution $z=\varphi(x)$ to (2.7) for some holomorphic maps $g, h: V \rightarrow \mathbb{C}$ defined on an open subset of \mathbb{C} with $|g(z)|-1$ nowhere zero, possibly after a change of coordinates $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1},-x_{2},-x_{3}\right)$.

Remark 2.4. (i) The change of coordinates is only necessary to avoid having $\xi_{2}-\mathrm{i} \xi_{3}=0$ which would correspond to a pole of g. This case can be included if we allow g and h to be meromorphic, as in [4, Chapter 1].
(ii) The theorem shows that any C^{2} submersive harmonic morphism defined on an open subset of \mathbb{R}_{1}^{3} with values in a Riemann surface is, in fact, real analytic. This is false for degenerate harmonic morphisms, see below.

We can interpret g and h as in the Riemannian case: Let \times denote the cross product in \mathbb{R}_{1}^{3} given by

$$
\left(a_{1}, a_{2}, a_{3}\right) \times\left(b_{1}, b_{2}, b_{3}\right)=\left(\left(a_{2} b_{3}-a_{3} b_{2}\right),-\left(a_{3} b_{1}-a_{1} b_{3}\right),-\left(a_{1} b_{2}-a_{2} b_{1}\right)\right) .
$$

Then a positively oriented unit vector along the line (2.7) is given by

$$
\begin{equation*}
\gamma(z)=\frac{\operatorname{Re} \boldsymbol{\xi} \times \operatorname{Im} \boldsymbol{\xi}}{|\operatorname{Re} \boldsymbol{\xi} \times \operatorname{Im} \boldsymbol{\xi}|}=\frac{1}{1-|g|^{2}}\left(1+|g|^{2}, 2 g\right) \tag{2.8}
\end{equation*}
$$

so that $g(z)$ represents the direction of the fibre over z. More precisely, let $H^{2}=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{3}:-x_{1}{ }^{2}+\right.$ $\left.x_{2}{ }^{2}+x_{3}{ }^{3}=-1\right\}$ denote the hyperbola of two sheets in \mathbb{R}_{1}^{3} and let $\sigma: H^{2} \rightarrow \mathbb{C} \cup\{\infty\} \backslash\{|z|=1\}$ be stereographic projection from $(-1,0,0)$ given by

$$
\begin{equation*}
\sigma\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+\mathrm{i} x_{3}\right) /\left(1+x_{1}\right)=\left(x_{1}-1\right) /\left(x_{2}-\mathrm{i} x_{3}\right) \tag{2.9}
\end{equation*}
$$

Then, as in the Riemannian case [4, Chapter 1], $g(z)=\sigma(\gamma(z))$, and $h(z)$ represents $\boldsymbol{c}(z)$ in the chart given by σ, that is, $h(z)=\mathrm{d} \sigma_{\gamma(z)}(\boldsymbol{c}(z))$.

Note that H^{2} has two components $H_{ \pm}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in H^{2}: \pm x_{1}>0\right\}$ corresponding under stereographic projection to the two components of $\mathbb{C} \cup\{\infty\} \backslash\{|z|=1\}$. If $|g(z)|<1$, then $\gamma(z) \in H_{+}^{2}$ is future-pointing, and if $|g(z)|>1$, then $\gamma(z) \in H_{-}^{2}$ is past-pointing.

We now obtain a converse to Proposition 2.2 as a consequence of a general construction of complexvalued harmonic morphisms due in the \mathbb{R}^{3} case to Jacobi [12]. It is a semi-Riemannian version of [4, Theorem 9.2.1]. Let (M, g) be an arbitrary Riemannian or semi-Riemannian manifold; denote the corresponding inner product on $T M$ (or its complex-bilinear extension to $T^{c} M=T M \otimes \mathbb{C}$) by \langle,\rangle_{M}, and the Laplace-Beltrami operator by Δ^{M}.

Proposition 2.5. Let A be an open subset of $M \times \mathbb{C}$ and let $G: A \rightarrow \mathbb{C},(x, z) \mapsto G(x, z)$ be $a C^{2}$ mapping which is (i) a harmonic morphism in its first argument, i.e., for each fixed $z, x \mapsto$ $G_{z}(x):=G(x, z)$ is a harmonic morphism $((x, z) \in A)$; (ii) holomorphic in its second argument z. Let $\varphi: U \rightarrow \mathbb{C}$ be a C^{2} solution to the equation $G(x, \varphi(x))=$ const. on an open subset U of M, and suppose that $\operatorname{grad} G_{z}(x, \varphi(x))$ is non-zero on a dense subset of U. Then φ is a harmonic morphism.

Proof: The hypothesis that G is a harmonic morphism in its first argument means that

$$
\begin{equation*}
\text { (a) } \quad \Delta^{M} G_{z}=0, \quad \text { (b) } \quad\left\langle\operatorname{grad} G_{z}, \operatorname{grad} G_{z}\right\rangle_{M}=0 \quad((x, z) \in A) \tag{2.10}
\end{equation*}
$$

To show that φ is a harmonic morphism we must show that

$$
\begin{equation*}
\text { (a) } \quad \Delta^{M} \varphi=0, \quad \text { (b) } \quad\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{M}=0 . \tag{2.11}
\end{equation*}
$$

We do this by applying the chain rule, as follows. Let $p \in U$ be a point where $\operatorname{grad} G_{z}$ is nonzero. Let $\left(x^{1}, \ldots, x^{m}\right)$ be coordinates centred on p which are normal in the sense that the Christoffel symbols vanish at p. Then, on a neighbourhood of p we have $G\left(x^{1}, \ldots, x^{m}, \varphi\left(x^{1}, \ldots, x^{m}\right)\right)=$ const. Differentiating this with respect to $x^{\alpha}(\alpha \in\{1, \ldots, m\})$ gives

$$
\begin{equation*}
\frac{\partial G}{\partial z} \frac{\partial \varphi}{\partial x^{\alpha}}+\frac{\partial G}{\partial x^{\alpha}}=0 \tag{2.12}
\end{equation*}
$$

hence,

$$
\left(\frac{\partial G}{\partial z}\right)^{2}\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{M}=\left\langle\operatorname{grad} G_{z}, \operatorname{grad} G_{z}\right\rangle_{M}
$$

From (2.12) and our assumption on $\operatorname{grad} G_{z}$ it follows that $\partial G / \partial z$ is non-zero, hence (2.11b) follows from (2.10b).

Next, we differentiate (2.12) with respect to $x^{\beta}(\beta \in\{1, \ldots, m\})$ to give

$$
\frac{\partial G}{\partial z} \frac{\partial^{2} \varphi}{\partial x^{\alpha} \partial x^{\beta}}+\frac{\partial^{2} G}{\partial z^{2}} \frac{\partial \varphi}{\partial x^{\alpha}} \frac{\partial \varphi}{\partial x^{\beta}}+\frac{\partial^{2} G}{\partial z \partial x^{\beta}} \frac{\partial \varphi}{\partial x^{\alpha}}+\frac{\partial^{2} G}{\partial x^{\alpha} \partial x^{\beta}}=0 .
$$

Since the coordinates are normal at p, on multiplying by $g^{\alpha \beta}$ and summing, we obtain at p,

$$
\begin{equation*}
\frac{\partial G}{\partial z} \Delta^{M} \varphi+\frac{\partial^{2} G}{\partial z^{2}}\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{M}+g^{\alpha \beta} \frac{\partial^{2} G}{\partial z \partial x^{\beta}} \frac{\partial \varphi}{\partial x^{\alpha}}+\Delta^{M} G_{z}=0 \tag{2.13}
\end{equation*}
$$

From (2.10b) we have $g^{\alpha \beta} \frac{\partial G}{\partial x^{\alpha}} \frac{\partial G}{\partial x^{\beta}}=0$. Differentiating with respect to z (and using $g^{\beta \alpha}=g^{\alpha \beta}$) gives $g^{\alpha \beta} \frac{\partial^{2} G}{\partial z \partial x^{\beta}} \frac{\partial G}{\partial x^{\alpha}}=0$. Hence, from (2.12), the third term of (2.13) vanishes; from (2.10b), so does the second, hence (2.13) reads

$$
\frac{\partial G}{\partial z} \Delta^{M} \varphi+\Delta^{M} G_{z}=0
$$

and (2.11b) follows.
We apply this to the case of interest: $M=\mathbb{R}_{1}^{3}$.
Theorem 2.6. Let $\boldsymbol{\xi}: V \rightarrow \mathbb{C}^{3}, \boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ be a holomorphic map from an open subset of \mathbb{C} or a Riemann surface which satisfies (2.4). Then any C^{2} solution $\varphi: U \rightarrow V, z=\varphi(\boldsymbol{x})$ to (2.3) on an open subset U of \mathbb{R}_{1}^{3} is a harmonic morphism of rank at least one everywhere. It is degenerate at the points of the fibres $\varphi^{-1}(z)$ for which $|\boldsymbol{\xi}(z)|_{1}^{2}=0$.

Conversely, every submersive C^{2} harmonic morphism from an open subset of \mathbb{R}_{1}^{3} to a Riemann surface is given this way locally, after shifting the origin if necessary.

Proof: Set

$$
\begin{equation*}
G(\boldsymbol{x}, z)=\langle\boldsymbol{\xi}(z), \boldsymbol{x}\rangle_{1} . \tag{2.14}
\end{equation*}
$$

Then $\operatorname{grad} G_{z}=\boldsymbol{\xi}(z)$, but this is non-zero at any point $z=\varphi(\boldsymbol{x})$ by (2.3). It follows from Proposition 2.5 that φ is a harmonic morphism; from (2.12) we see that $\mathrm{d} \varphi \neq 0$ at all points of U, so that φ has rank at least one everywhere.

Let $z \in V$. Suppose that $|\boldsymbol{\xi}(z)|_{1}^{2} \neq 0$. Then, $\boldsymbol{\xi}(z) \neq \mathbf{0}$ so the fibre $\varphi^{-1}(z)$ is non-empty; from (2.4) we see that $\operatorname{Re} \boldsymbol{\xi}(z)$ and $\operatorname{Im} \boldsymbol{\xi}(z)$ are spacelike, orthogonal and have non-zero norm, and φ is submersive at all points on the fibre.

Suppose instead that $|\boldsymbol{\xi}(z)|_{1}^{2}=0$. Then from (2.4), $\operatorname{Re} \boldsymbol{\xi}(z)$ and $\operatorname{Im} \boldsymbol{\xi}(z)$ are lightlike and orthogonal and so must be linearly dependent. Hence, from (2.3), the fibre $\varphi^{-1}(z)$ is non-empty if and only if $\operatorname{Re} \boldsymbol{\xi}(z) \neq \mathbf{0}$ but $\operatorname{Im} \boldsymbol{\xi}(z)=\mathbf{0}$, in which case it is the degenerate plane $<\operatorname{Re} \boldsymbol{\xi}(z), \boldsymbol{x}>_{1}=1$, all of whose points are degenerate points of φ.

The converse follows from Proposition 2.2.
Remark 2.7. Given a holomorphic $\boldsymbol{\xi}: V \rightarrow \mathbb{C}^{3}$ which satisfies (2.4), as z varies, the lines (2.3) form a congruence, i.e., a two-parameter family of lines, which may or may not be a foliation. The proof, equation (2.12) and the implicit function theorem shows that there is a local C^{2} solution $z=\varphi(\boldsymbol{x})$ to (2.3) though a point $\left(p, z_{0}\right)$ if and only if $\partial G / \partial z \equiv\left\langle\boldsymbol{\xi}^{\prime}(z), \boldsymbol{x}\right\rangle_{1}$ is non-zero at that point. Indeed, at such a point, the lines (2.3) form a foliation. If, on the other hand, $\partial G / \partial z=0$ at (p, z_{0}), then the lines (2.3) meet to first order; we call such a point an envelope point of the congruence.

We can give a converse to Proposition 2.3, dropping the condition $|g(z)| \neq 1$ as follows.
Corollary 2.8. Let $g, h: V \rightarrow \mathbb{C} \cup\{\infty\}$ be holomorphic maps from an open subset of \mathbb{C} (or of a Riemann surface). Then any C^{2} solution $\varphi: U \rightarrow V, z=\varphi\left(x_{1}, x_{2}, x_{3}\right)$ to (2.7) is a harmonic morphism with rank at least one everywhere. Further,
(i) If $|g(z)| \neq 1$, then the fibre $\varphi^{-1}(z)$ is non-empty and φ is regular at all of its points.
(ii) If $|g(z)|=1$ and $h(z) / g(z)$ is real, then $\varphi^{-1}(z)$ is non-empty and φ is degenerate at all of its points.
(iii) If $|g(z)|=1$ and $h(z) / g(z)$ is not real, then $\varphi^{-1}(z)$ is empty.

Proof: This follows from Theorem [2.6, noting that, when $|g(z)|=1$, we have $\operatorname{Im} \boldsymbol{\xi}(z)=0$ if and only if $\operatorname{Im}(h(z) / g(z))=0$. Indeed, when $|g(z)|=1$, writing $g(z)=\mathrm{e}^{\mathrm{i} \theta(z)}$ with $\theta(z) \in \mathbb{R}$, the real and imaginary parts of (2.7) read

$$
\left.\begin{array}{rl}
\cos \theta\left(-x_{1}+\cos \theta x_{2}+\sin \theta x_{3}\right) & =\operatorname{Re} h \\
\sin \theta\left(-x_{1}+\cos \theta x_{2}+\sin \theta x_{3}\right) & =\operatorname{Im} h
\end{array}\right\} ;
$$

this system has a solution if and only if $h(z)=s(z) e^{\mathrm{i} \theta(z)}$ for some $s(z) \in \mathbb{R}$, in which case $\varphi^{-1}(z)$ is the degenerate plane

$$
\begin{equation*}
-x_{1}+\cos \theta(z) x_{2}+\sin \theta(z) x_{3}=s(z) \tag{2.15}
\end{equation*}
$$

We shall see in Corollary 4.6 that all C^{2} submersive harmonic morphisms which are degenerate everywhere satisfy (2.15).

In the following examples we write $q=x_{2}+\mathrm{i} x_{3}$.
Example 2.9. (Orthogonal projection) Define $g, h: \mathbb{C} \rightarrow \mathbb{C}$ by $g(z)=0, h(z)=z / 2$. Then (2.7) becomes: $q=z$. This defines the congruence of lines parallel to the x_{1}-axis. These lines are the fibres of the globally defined harmonic morphism $\varphi: \mathbb{R}_{1}^{3} \rightarrow \mathbb{C}$ given by $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{2}+\mathrm{i} x_{3}$.

Example 2.10. (Radial projection) Define $g, h: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ by $g(z)=z, h(z)=0$. Then (2.7) becomes

$$
\begin{equation*}
z^{2} \bar{q}-2 z x_{1}+q=0 \tag{2.16}
\end{equation*}
$$

This has solutions

$$
\begin{equation*}
z_{ \pm}=\left(x_{1} \pm \sqrt{x_{1}^{2}-|q|^{2}}\right) / \bar{q} \tag{2.17}
\end{equation*}
$$

Note that $\left|z_{+}\right|\left|z_{-}\right|=1$. Let $C=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{2}=|q|^{2}\right\}$ denote the light cone and $U=\left\{\left(x_{1}, x_{2}, x_{3}\right)\right.$: $\left.x_{1}{ }^{2}>|q|^{2}\right\}$ its interior. Then (2.17) defines smooth solutions $z_{ \pm}: U \backslash\left\{\left(x_{1}, 0,0\right): x_{1} \in \mathbb{R}\right\} \rightarrow \mathbb{C} ;$ on setting $z_{+}\left(x_{1}, 0,0\right)=0$ and $z_{-}\left(x_{1}, 0,0\right)=\infty$ these extend to smooth solutions $z_{+}: U \rightarrow D^{2}, z_{-}: U \rightarrow$ $\mathbb{C} \cup\{\infty\} \backslash \overline{D^{2}}$, where D^{2} is the open unit disc. If we now put $\varphi_{ \pm}=\sigma^{-1} \circ z_{ \pm}$, where σ is stereographic projection (2.9), then we obtain smooth submersive harmonic morphisms $\varphi_{ \pm}: U \rightarrow H^{2}$ defined by

$$
\varphi_{ \pm}=\mp \frac{1}{\sqrt{x_{1}^{2}-x_{2}^{2}-x_{3}^{2}}}\left(x_{1}, x_{2}, x_{3}\right) .
$$

Geometrically, $\varphi_{ \pm}$is 干-radial projection centred on the origin. Its fibres are the half-lines of U from the origin.

If, on the other hand, we restrict $z_{ \pm}$to the exterior $\bar{U}^{c}=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}{ }^{2}<|q|^{2}\right\}$ of the light cone, then $\left|z_{+}\right|=\left|z_{-}\right|=1$ and we obtain everywhere-degenerate harmonic morphisms $z_{ \pm}: \bar{U}^{c} \rightarrow S^{1} \subset \mathbb{C}$. The fibres of these harmonic morphisms are degenerate planes tangent to the light cone C; each point \boldsymbol{x} of \bar{U}^{c} lies on two such planes, as \boldsymbol{x} approaches the light cone both of these planes tend to the tangent plane.

Example 2.11. (Disc example) Define $g, h: \mathbb{C} \rightarrow \mathbb{C}$ by $g(z)=z, h(z)=\mathrm{i} z$. Then (2.7) becomes

$$
\begin{equation*}
z^{2} \bar{q}-2 z\left(\mathrm{i}+x_{1}\right)+q=0 . \tag{2.18}
\end{equation*}
$$

This has solutions

$$
z_{ \pm}=\left(\mathrm{i}+x_{1} \pm \sqrt{\left(\mathrm{i}+x_{1}\right)^{2}-|q|^{2}}\right) / \bar{q}
$$

Noting that $\left(\mathrm{i}+x_{1}\right)^{2}-|q|^{2}=-1-|\boldsymbol{x}|_{1}^{2}+2 \mathrm{i} x_{1}$ never lies on the non-negative real axis, write

$$
\left(\mathrm{i}+x_{1}\right)^{2}-|q|^{2}=r \mathrm{e}^{\mathrm{i} \theta} \quad(r>0,0<\theta<2 \pi) ;
$$

then on taking $\sqrt{\left(\mathrm{i}+x_{1}\right)^{2}-|q|^{2}}=\sqrt{r} e^{\mathrm{i} \theta / 2}$, we see that the maps $z_{ \pm}$are smooth on $\mathbb{R}_{1}^{3} \backslash\left\{\left(x_{1}, 0,0\right)\right\}$. Setting $z_{-}\left(x_{1}, 0,0\right)=0, z_{+}\left(x_{1}, 0,0\right)=\infty$ extends these to smooth harmonic morphisms $z_{-}: \mathbb{R}_{1}^{3} \rightarrow D^{2}$ and $z_{+}: \mathbb{R}_{1}^{3} \rightarrow \mathbb{C} \cup\{\infty\} \backslash \overline{D^{2}}$. Note that $z_{+}\left(x_{1}, q\right)=1 / z_{-}\left(x_{1}, \bar{q}\right),\left(\left(x_{1}, q\right) \in \mathbb{R}_{1}^{3}\right)$. Equation (2.18) is invariant under rotations $z \mapsto e^{\mathrm{i} \theta} z, q \mapsto e^{\mathrm{i} \theta} q$, so that it defines a congruence of lines which is rotationally symmetric about the x_{1}-axis. Hence, to describe this congruence, it suffices to determine the directions of the lines through the points $(0, u, 0)$ for $u>0$. At such a point,

$$
z_{ \pm}=\left(\mathrm{i} \pm \sqrt{-1-u^{2}}\right) / u=\mathrm{i}\left(1 \pm \sqrt{1+u^{2}}\right) / u
$$

Comparing with (2.9), we see that the direction $\boldsymbol{\gamma}$ of the fibre at z is given by $\gamma(z)=\left(\mp \sqrt{1+u^{2}}, 0,-u\right)$; this direction is perpendicular to the radius from $(0,0,0)$ to $(0, u, 0)$ and inclined at an angle $\arctan \left(u / \sqrt{1+u^{2}}\right)$ (and pointing 'clockwise') to the negative (resp. positive) x_{1}-axis. As u increases from 0 to ∞, this angle increases from 0 to $\pi / 4$. We thus obtain surjective submersive harmonic morphisms $z_{-}: \mathbb{R}_{1}^{3} \rightarrow D^{2}$ and $z_{+}: \mathbb{R}_{1}^{3} \rightarrow \mathbb{C} \cup\{\infty\} \backslash \overline{D^{2}}$. Composing with σ^{-1} gives surjective submersive harmonic morphisms $\varphi_{-}: \mathbb{R}_{1}^{3} \rightarrow H_{+}^{2}$ and $\varphi_{+}: \mathbb{R}_{1}^{3} \rightarrow H_{-}^{2}$.

Note that we may introduce a real parameter $t \neq 0$ and set $h(z)=$ itz (with $g(z)=z$ unchanged). This gives the same example scaled by a factor of t; as $t \rightarrow 0$, this scaled disc example tends to radial projection (Example 2.10).

Corollary 2.12. There is a globally defined surjective submersive harmonic morphism from Minkowski 3 -space $\mathbb{M}^{3}=\mathbb{R}_{1}^{3}$ to the unit disc.

Indeed, both the disc example and orthogonal projection (Example 2.9) define harmonic morphisms globally on Minkowski 3 -space. This is in contrast to the Riemannian case, where we established a Bernstein-type theorem [3] (see also [4, Theorem 6.7.3]) that orthogonal projection is the only globally defined harmonic morphism from \mathbb{R}^{3} to a surface, up to postcomposition with weakly conformal maps. Globally defined harmonic morphisms from higher-dimensional Minkowski spaces can be obtained by precomposing such harmonic morphisms with orthogonal projections $\mathbb{R}_{1}^{m} \rightarrow \mathbb{R}_{1}^{3}$ for any $m>3$.

3 Harmonic morphisms from Minkowski 3-space to a Lorentz surface

We recall some facts about hyperbolic numbers. Let $\mathbb{D}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right\}$ equipped with the usual coordinatewise addition, but with multiplication given by

$$
\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}+x_{2} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
$$

We call the commutative ring \mathbb{D} the set of hyperbolic or double numbers. Write $\mathrm{j}=(0,1)$; then we have $\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \mathrm{j}$ with $\mathrm{j}^{2}=1$. Note that, unlike the complex numbers, \mathbb{D} has zero divisors, namely the numbers $a(1 \pm \mathrm{j})(a \in \mathbb{R})$. Multiplication by j defines an involution I^{D} on D called the characteristic involution, explicitly, $I^{D}\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$.

For $z=x_{1}+x_{2} \mathrm{j},\left(x_{1}, x_{2} \in \mathbb{R}\right)$, we write $x_{1}=\operatorname{Re} z, x_{2}=\operatorname{Im} z$ and $\bar{z}=x_{1}-x_{2} \mathrm{j}$. We shall often identify $z \in \mathbb{D}$ with the point $\left(x_{1}, x_{2}\right)$ in standard coordinates in Minkowski 2-space $\mathbb{M}^{2}=\mathbb{R}_{1}^{2}$, then the standard Minkowski square norm $|z|_{1}^{2}=\langle z, z\rangle_{1}=-x_{1}^{2}+x_{2}^{2}$ is given by $|z|_{1}^{2}=-z \bar{z}$.

From the chain rule, we obtain

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right) \quad \text { and } \quad \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}\right)
$$

so that, in standard coordinates $\left(x_{1}, x_{2}\right)$, the Laplacian on \mathbb{M}^{2} is given by

$$
\Delta^{\mathbb{M}^{2}}=-\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}=-4 \frac{\partial^{2}}{\partial \bar{z} \partial z}=-4 \frac{\partial^{2}}{\partial z \partial \bar{z}}
$$

By analogy with the complex numbers, we say that a $C^{2} \operatorname{map} \varphi: U \rightarrow \mathbb{D}, w=\varphi(z)$, from an open subset of \mathbb{D} is H-holomorphic (resp., H-antiholomorphic) if we have

$$
\frac{\partial w}{\partial \bar{z}}=0 \quad\left(\text { resp. }, \frac{\partial w}{\partial z}=0\right) ;
$$

equivalently, on writing $z=x_{1}+x_{2} \mathrm{j}, w=u_{1}+u_{2 \mathrm{j}}$, the map φ satisfies the H-Cauchy-Riemann equations:

$$
\frac{\partial u_{1}}{\partial x_{1}}=\frac{\partial u_{2}}{\partial x_{2}} \text { and } \frac{\partial u_{1}}{\partial x_{2}}=\frac{\partial u_{2}}{\partial x_{1}} \quad\left(\text { resp., } \frac{\partial u_{1}}{\partial x_{1}}=-\frac{\partial u_{2}}{\partial x_{2}} \text { and } \frac{\partial u_{1}}{\partial x_{1}}=-\frac{\partial u_{2}}{\partial x_{2}}\right)
$$

These conditions are equivalent to demanding that the differential of φ intertwine the characteristic involutions, viz., $\mathrm{d} \varphi \circ I^{D}=I^{D} \circ \mathrm{~d} \varphi\left(\right.$ resp., $\left.\mathrm{d} \varphi \circ I^{D}=-I^{D} \circ \mathrm{~d} \varphi\right)$.

By a Lorentz surface, we mean a smooth surface equipped with a conformal equivalence class of Lorentzian metrics - here two metrics g, g^{\prime} on N^{2} are said to be conformally equivalent if $g^{\prime}=\mu g$ for some (smooth) function $\mu: N^{2} \rightarrow \mathbb{R} \backslash\{0\}$. Any Lorentz surface is locally conformally equivalent to 2-dimensional Minkowski space \mathbb{M}^{2}, see, for example, [4]. Let $\varphi: U \rightarrow N_{1}^{2}$ be a C^{2} mapping from an open subset U of \mathbb{R}_{1}^{3} to a Lorentz surface. For local considerations, we can assume that φ has values in \mathbb{M}^{2}. Then, on identifying \mathbb{M}^{2} with the space \mathbb{D} of hyperbolic numbers as above and writing $\varphi=\varphi_{1}+\varphi_{2 \mathrm{j}}$, the map φ is a harmonic morphism if and only if it satisfies equations (1.2) with $m=3$, where now φ has values in \mathbb{D}.

From now on, suppose that $\varphi: U \rightarrow \mathbb{M}^{2}=\mathbb{D}$ is a non-constant harmonic morphism defined on an open subset U of \mathbb{R}_{1}^{3}. As in the last section, by a generalization of [2], its fibres are straight lines, more precisely,

Lemma 3.1. Let $p \in U$ be a point where φ is submersive. Then the connected component of the fibre of φ through p is a spacelike geodesic.

To proceed, we make the assumptions (2.1) of the previous section.
Write $V=\varphi(U)$ and let ℓ be a fibre of $\varphi: U \rightarrow \mathbb{D}$, i.e. $\ell=\varphi^{-1}(z)$ for some $z \in V$. Then, in contrast to the last section, ℓ is a spacelike line. Now the directions of spacelike lines are parametrized by the pseudosphere $S_{1}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}:-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$. Let ℓ have direction $\boldsymbol{\gamma} \in S_{1}^{2} \subset \mathbb{R}_{1}^{3}$. We proceed by analogy with the last section, replacing the rotation on the horizontal space by a characteristic involution.

Let $\boldsymbol{c} \in \mathbb{R}^{3}$ be the unique vector which satisfies $\langle\boldsymbol{c}, \boldsymbol{\gamma}\rangle_{1}=0$ and has endpoint on ℓ; note that \boldsymbol{c} can be timelike, null or spacelike. Write $\varphi=\varphi_{1}+\varphi_{2} \mathrm{j}$. For each $\boldsymbol{x} \in U$, orient $\mathcal{H}_{\boldsymbol{x}}$ so that $\left.\mathrm{d} \varphi_{\boldsymbol{x}}\right|_{\mathcal{H}_{\boldsymbol{x}}}$ is orientation preserving, equivalently, $\left\{\operatorname{grad} \varphi_{1}, \operatorname{grad} \varphi_{2}\right\}$ is an oriented basis; then orient ℓ by choosing its unit positive tangent vector γ such that $\left\{\operatorname{grad} \varphi_{1}, \operatorname{grad} \varphi_{2}, \gamma\right\}$ is an oriented basis. Let $I^{\mathcal{H}}$ denote the characteristic involution in the 2-plane \mathcal{H}_{x} obtained by lifting I^{D} from \mathbb{D}, equivalently $I^{\mathcal{H}}$ interchanges $\operatorname{grad} \varphi_{1}$ and $\operatorname{grad} \varphi_{2}$. If \boldsymbol{c} is non-null (spacelike or timelike), then $|\boldsymbol{c}|_{1}^{2} \equiv\langle\boldsymbol{c}, \boldsymbol{c}\rangle_{1}$ is non-zero and we may define a 'hyperbolic' vector $\boldsymbol{\xi}=\boldsymbol{\xi}(z) \in \mathbb{D}^{3}$ by

$$
\begin{equation*}
\boldsymbol{\xi}=\left(\boldsymbol{c}+\mathrm{j} I^{\mathcal{H}} \boldsymbol{c}\right) /|\boldsymbol{c}|_{1}^{2} . \tag{3.1}
\end{equation*}
$$

Then, in a way analogous to that in the last section, the equation of ℓ can be written as a single 'hyperbolic' equation:

$$
\begin{equation*}
\langle\boldsymbol{\xi}(z), \boldsymbol{x}\rangle_{1}=1 \tag{3.2}
\end{equation*}
$$

this is identical to (2.3) except that the inner product \langle,\rangle_{1} on \mathbb{R}_{1}^{3} is extended by hyperbolic bilinearity to $\mathbb{D}^{3}=\mathbb{R}_{1}^{3} \otimes \mathbb{D}$. In the case when \boldsymbol{c} is null, this equation defines a (degenerate) plane which contains
the line ℓ; we shall discuss this case below. Again, $\boldsymbol{\xi}$ is null in the sense that it satisfies $\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle_{1}=0$, explicitly (note the difference of sign to that in (2.4)),

$$
\begin{equation*}
|\operatorname{Re} \boldsymbol{\xi}(z)|_{1}^{2}=-|\operatorname{Im} \boldsymbol{\xi}(z)|_{1}^{2} \quad \text { and } \quad\langle\operatorname{Re} \boldsymbol{\xi}(z), \operatorname{Im} \boldsymbol{\xi}(z)\rangle_{1}=0 \tag{3.3}
\end{equation*}
$$

The hyperbolic square norm $|\boldsymbol{\xi}|_{1}^{2}:=\langle\boldsymbol{\xi}, \overline{\boldsymbol{\xi}}\rangle_{1}=|\operatorname{Re} \boldsymbol{\xi}(z)|_{1}^{2}-|\operatorname{Im} \boldsymbol{\xi}(z)|_{1}^{2}$ satisfies $|\boldsymbol{\xi}|_{1}^{2}=2 /|\boldsymbol{c}|_{1}^{2}$ where $|\boldsymbol{c}|_{1}^{2}=\langle\boldsymbol{c}, \boldsymbol{c}\rangle_{1}$, so that (3.1) gives a one-to-one correspondence between $\boldsymbol{\xi} \in \mathbb{D}^{3}$ which satisfy $\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle_{1}=0$ and have $|\boldsymbol{\xi}|_{1}^{2} \neq 0$ and vectors $\boldsymbol{c} \in \mathbb{R}_{1}^{3}$ which have $|\boldsymbol{c}|_{1}^{2} \neq 0$; the inverse is given by

$$
\boldsymbol{c}=2 \operatorname{Re} \boldsymbol{\xi} /|\boldsymbol{\xi}|_{1}^{2}, \quad \text { so that } \quad I^{\mathcal{H}} \boldsymbol{c}=2 \operatorname{Im} \boldsymbol{\xi} /|\boldsymbol{\xi}|_{1}^{2}
$$

As in the previous section, if $\varphi: U \rightarrow \mathbb{D}$ is a harmonic morphism satisfying assumptions (2.1), then $\boldsymbol{\xi}: V=\varphi(U) \rightarrow \mathbb{D}^{3}$ is H-holomorphic. Conversely, there is a version of Proposition 2.5 where \mathbb{C} is replaced by \mathbb{D}, but now we must impose the stronger condition that $|\operatorname{grad} G|_{1}^{2}$ is non-zero to ensure that $\partial G / \partial z$ is not a zero divisor; applying this as before we obtain the following version of Theorem 2.6 .

Theorem 3.2. Let $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right): V \rightarrow \mathbb{D}^{3}$ be an H-holomorphic map from an open subset of \mathbb{D} (or of a Lorentz surface) which is null: $\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle_{1}=0$ and has non-zero hyperbolic square norm $|\boldsymbol{\xi}|_{1}^{2}$ on a dense open subset of V. Then any C^{2} solution $\varphi: U \rightarrow \mathbb{M}^{2}=\mathbb{D}, z=\varphi(\boldsymbol{x})$ on an open subset of \mathbb{R}_{1}^{3} to equation (3.2) is a harmonic morphism.

Conversely, every C^{2} submersive harmonic morphism from an open subset of \mathbb{R}_{1}^{3} to a Lorentz surface is given this way locally, after shifting the origin if necessary.

H-holomorphic functions $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right): V \rightarrow \mathbb{D}^{3}$ satisfying $\langle\boldsymbol{\xi}, \boldsymbol{\xi}\rangle_{1}=0$ with $\xi_{1}-\xi_{2}$ j not zero and not a zero divisor are all given by

$$
\begin{equation*}
\boldsymbol{\xi}=\frac{1}{2 h(z)}\left(-\left(1+g(z)^{2}\right), \mathrm{j}\left(1-g(z)^{2}\right),-2 g(z)\right) \tag{3.4}
\end{equation*}
$$

where $g, h: V \rightarrow \mathbb{D}(h \neq 0)$ are H-holomorphic functions; explicitly,

$$
g=\xi_{3} /\left(\xi_{1}-\xi_{2} \mathrm{j}\right)=\left(\xi_{1}+\xi_{2 \mathrm{j}}\right) / \xi_{3}, \quad h=-1 /\left(\xi_{1}-\xi_{2 \mathrm{j}}\right)
$$

Then the representation (3.2) takes the form

$$
\begin{equation*}
\left(1+g(z)^{2}\right) x_{1}+\mathrm{j}\left(1-g(z)^{2}\right) x_{2}-2 g(z) x_{3}=2 h(z) \tag{3.5}
\end{equation*}
$$

From (3.4) we have $|\boldsymbol{\xi}|_{1}^{2}=\left(1-|g|^{2}\right)^{2} /\left(4|h|^{2}\right)$; we deduce the following from Theorem 3.2.
Corollary 3.3. Let $g, h: V \rightarrow \mathbb{D}$ be H-holomorphic functions from an open subset of \mathbb{D} (or of a Lorentz surface) with $|g(z)| \not \equiv 1$. Then any C^{2} solution $\varphi: U \rightarrow V, z=\varphi\left(x_{1}, x_{2}, x_{3}\right)$, to (3.5) is a harmonic morphism which is not degenerate everywhere.

Conversely, any C^{2} submersive harmonic morphism φ is given locally this way, possibly after a change of coordinates.

We can interpret g and h in a way analogous to previous cases. Indeed, let $\mathcal{K}^{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in S_{1}^{2}\right.$: $\left.x_{3}=-1\right\}$ and $\mathcal{H}^{1}=\left\{z \in \mathbb{D}:|z|^{2}=-1\right\}$. Then we can identify $S_{1}^{2} \backslash \mathcal{K}^{1}$ with $\mathbb{D} \backslash \mathcal{H}^{1}$ by stereographic projection $\sigma_{H}:\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2} \mathrm{j}\right) /\left(1+x_{3}\right)$. Then $g(z)=\sigma_{H}(\gamma(z))$ and $h(z)=\left(\mathrm{d} \sigma_{H}\right)_{\gamma(z)}(\boldsymbol{c}(z))$.

Example 3.4. (Orthogonal projection) Define $g, h: \mathbb{D} \rightarrow \mathbb{D}$ by $g(z)=0, \quad h(z)=z / 2$. Then (3.5) becomes: $x_{1}+x_{2} \mathrm{j}=z$. This defines the congruence of lines parallel to the x_{3}-axis. These lines are the fibres of the globally defined harmonic morphism $\varphi: \mathbb{M}^{3}=\mathbb{R}_{1}^{3} \rightarrow \mathbb{M}^{2}=\mathbb{D}$ given by $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2} \mathrm{j}$.

Example 3.5. (Radial projection) Define $g, h: \mathbb{D} \rightarrow \mathbb{D}$ by $g(z)=z, h(z)=0$. Then (3.5) becomes:

$$
\begin{equation*}
z^{2}\left(x_{1}-x_{2 \mathrm{j}}\right)-2 z x_{3}+\left(x_{1}+x_{2} \mathrm{j}\right)=0 \tag{3.6}
\end{equation*}
$$

This can be solved on $\mathbb{R}_{1}^{3} \backslash\left\{x_{1}= \pm x_{2}\right\}$ to give

$$
z=\frac{x_{3}+\varepsilon \sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}{x_{1}-x_{2} \mathrm{j}}=\frac{\left(x_{3}+\varepsilon \sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\right)\left(x_{1}+x_{2} \mathrm{j}\right)}{x_{1}^{2}-x_{2}^{2}}
$$

here we set $\varepsilon= \pm 1, \pm \mathrm{j}$ to get all possible square roots in \mathbb{D}. Note that on the exterior $\bar{U}^{c}=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{D}:-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}>0\right\}$ of the light cone C, taking $\varepsilon= \pm 1$ gives two smooth harmonic morphisms $z_{ \pm}: \bar{U}^{c} \backslash\left\{x_{1}= \pm x_{2}\right\} \rightarrow \mathbb{M}^{2}$, which can be interpreted as compositions $z_{ \pm}=\sigma_{H} \circ \varphi_{ \pm}$, where $\varphi_{ \pm}$is the restriction to $\bar{U}^{c} \backslash\left\{x_{1}= \pm x_{2}\right\}$ of radial projection (or its negative) $\bar{U}^{c} \rightarrow S_{1}^{2}$:

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, x_{2}\right) \mapsto \mp \frac{\boldsymbol{x}}{\sqrt{|\boldsymbol{x}|_{1}^{2}}}=\mp \frac{1}{\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}\left(x_{1}, x_{2}, x_{3}\right) .
$$

When $\boldsymbol{x} \in C$, (3.5) has repeated solutions z and the fibre through \boldsymbol{x} is the (degenerate) tangent plane to C at that point. Note that both \mathbb{M}^{2} and S_{1}^{2} have conformal compactification given by a quadric Q_{1}^{2} in $\mathbb{R} P^{3}$, see [4, Example 14.1.22]; as \boldsymbol{x} approaches a point on $C, \varphi_{ \pm}(\boldsymbol{x})$ tends to a point at infinity of S_{1}^{2} in Q_{1}^{2}, and the harmonic morphism can be regarded as having values in Q_{1}^{2}.

When \boldsymbol{x} lies inside the light cone there is no value of $z \in \mathbb{M}^{2}$ satisfying (3.5) (contrast with Example 2.10).

Alternatively, we can take $\varepsilon= \pm \mathrm{j}$ to get the other two values of the square root, in which case

$$
z_{ \pm}=\frac{x_{3} \pm\left(\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\right) \mathrm{j}}{x_{1}-x_{2} \mathrm{j}}=\frac{x_{1}+x_{2} \mathrm{j}}{x_{3} \mp\left(\sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\right) \mathrm{j}} .
$$

Then $\left|z_{ \pm}\right|_{1}^{2}=-1$ and $z_{ \pm}$is an everywhere-degenerate harmonic morphism $\bar{U}^{c} \backslash\left\{x_{1} \pm x_{2}\right\} \rightarrow \mathbb{M}^{2}$ with values on the hyperbola \mathcal{H}^{1}. The fibres of these harmonic morphisms are the degenerate tangent planes to the light cone C. As \boldsymbol{x} tends to a point in the set $\left\{x_{1}= \pm x_{2}\right\}, z_{ \pm}$tends to the point at infinity on the hyperbola and we can regard $z_{ \pm}$as extending to an everywhere-degenerate harmonic morphism from \bar{U}^{c} to the compactification Q_{1}^{2} of \mathbb{M}^{2}.

Example 3.6. (Disc example) Define $g, h: \mathbb{D} \rightarrow \mathbb{D}$ by $g(z)=z, h(z)=z \mathrm{j}$. Then (3.5) becomes

$$
\begin{equation*}
z^{2}\left(x_{1}-x_{2} \mathrm{j}\right)-2 z\left(x_{3}+\mathrm{j}\right)+x_{1}+x_{2} \mathrm{j}=0 \tag{3.7}
\end{equation*}
$$

This can be solved on $\mathbb{R}_{1}^{3} \backslash\left\{x_{1}= \pm x_{2}\right\}$ to give

$$
z_{\varepsilon}=\frac{x_{3}+\mathrm{j}+\varepsilon \sqrt{-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1+2 x_{3} \mathrm{j}}}{x_{1}-x_{2 \mathrm{j}}} \quad(\varepsilon= \pm 1, \pm \mathrm{j}) .
$$

The square root is smooth on the region W where $\eta_{1}=-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+1+2 x_{3}$ and $\eta_{2}=-x_{1}^{2}+x_{2}^{2}+$ $x_{3}^{2}+1-2 x_{3}$ are both positive, this is given by $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{1}^{3}:\left(1-\left|x_{3}\right|\right)^{2}-x_{1}^{2}+x_{2}^{2}>0\right\}$. Then on $W \backslash\left\{x_{1}= \pm x_{2}\right\}$ we can compute the square root to give

$$
z_{\varepsilon}=\frac{x_{3}+\mathrm{j}+\varepsilon\left\{\frac{1}{2}\left(\sqrt{\eta_{1}}+\sqrt{\eta_{2}}\right)+\frac{1}{2}\left(\sqrt{\eta_{1}}-\sqrt{\eta_{2}}\right) \mathrm{j}\right\}}{x_{1}-x_{2} \mathrm{j}} \quad(\varepsilon= \pm 1, \pm \mathrm{j})
$$

In order to describe these harmonic morphisms geometrically, first take $\varepsilon=1$. Then at a point $\left(x_{1}, x_{2}, x_{3}\right)=(u, 0,0)$, with $|u|<1$ so that it lies in W, we have $z_{1}=\left(\mathrm{j}+\sqrt{1-u^{2}}\right) / u$ and so γ consists of multiples of the vectors $\left(\sqrt{1-u^{2}}, 1,0\right)$; it is easily seen that the fibres of z_{1} are tangent to the hyperbola: $x_{1}^{2}-x_{2}^{2}=1, x_{3}=0$. As x_{3} increases from 0 , the lines start tilting.

With $\varepsilon=\mathrm{j}$, we find that, at $\left(x_{1}, x_{2}, 0\right)$,

$$
z_{\mathrm{j}}=\frac{\mathrm{j}+\left(\sqrt{1-x_{1}^{2}+x_{2}^{2}}\right) \mathrm{j}}{x_{1}-x_{2} \mathrm{j}}
$$

and γ consists of multiples of the vectors $\left(x_{2}, x_{1},-\sqrt{1-r^{2}}\right)$ if $x_{1}^{2}>x_{2}^{2}$, and $\left(x_{2}, x_{1},-1\right)$ if $x_{1}^{2}<x_{2}^{2}$, where $r^{2}=-x_{1}^{2}+x_{2}^{2}$. Thus, at any point $P\left(x_{1}, x_{2}, 0\right)$, the fibre is perpendicular in a Lorentzian sense to the radius $O P$; as P travels along the radius from O, it starts vertically down and then swivels until it is horizontal either when it hits the hyperbola: $x_{1}^{2}-x_{2}^{2}=1, x_{3}=0$ (i.e. if $x_{1}^{2}>x_{2}^{2}$), or, if it avoids the hyperbola (i.e. if $x_{1}^{2}<x_{2}^{2}$), at infinity. It is thus a hyperbolic analogue of the disc example that occurs in the Riemannian case [4, Example 1.5.3]. Note that since (3.7) is invariant under the change of coordinates $\left(x_{1}, x_{2}, x_{3}, z\right) \mapsto\left(x_{1},-x_{2}, x_{3}, 1 / z\right)$, the cases $\varepsilon=-1,-\mathrm{j}$ are equivalent to the above cases.

Note that, as in Example 2.11 we may introduce a real parameter $t \neq 0$ and set $h=t z \mathrm{j}$ (with $g=z$ unchanged); this gives the same example scaled by a factor of t. Again, as $t \rightarrow 0$, this scaled disc example tends to radial projection (Example 3.5).

4 Degenerate harmonic morphisms on Minkowski spaces

By definition (see the Introduction), a C^{1} horizontally weakly conformal map is degenerate at a point x if and only if the kernel of $\mathrm{d} \varphi_{x}$ is degenerate. It follows [4, Remark 14.5.5] that an everywhere-degenerate harmonic morphism φ from a Lorentzian manifold M_{1}^{m} to an arbitrary semi-Riemannian manifold N necessarily has rank one everywhere; further, by [4, Proposition 14.5.8], it factors locally into the composition of an everywhere-degenerate harmonic morphism from M_{1}^{m} to \mathbb{R} and an immersion of \mathbb{R} into N. Hence, to determine all such φ, it suffices to take $N=\mathbb{R}$. In the case that M_{1}^{m} is an open subset U of m-dimensional Minkowski space $\mathbb{M}^{m}=\mathbb{R}_{1}^{m}$, an everywhere-degenerate harmonic morphism is just a null real-valued solution of the wave equation, i.e. a solution $\varphi: U \rightarrow \mathbb{R}$ of the system (1.2).

To solve this problem, we need the following version of Proposition 2.5; note that it is empty if M is Riemannian. As the proof uses the same calculations, we omit it.

Proposition 4.1. Let M be an arbitrary semi-Riemannian manifold. Let A be an open subset of $M \times \mathbb{R}$ and let $G: A \rightarrow \mathbb{R},(x, z) \mapsto G(x, z)$, be a C^{2} mapping which is an everywhere-degenerate harmonic morphism in its first argument, i.e, writing $G_{z}(x)=G(x, z)$,

$$
\begin{equation*}
\text { (a) } \quad \Delta^{M} G_{z}=0, \quad \text { (b) } \quad\left\langle\operatorname{grad} G_{z}, \operatorname{grad} G_{z}\right\rangle_{M}=0 \quad((x, z) \in A) \tag{4.1}
\end{equation*}
$$

Let $\varphi: U \rightarrow \mathbb{C}$ be a C^{2} solution to equation $G(x, \varphi(x))=$ const. on an open subset U of M and suppose that $\operatorname{grad} G_{z}(x, \varphi(x))$ is non-zero on a dense subset of U. Then φ is an everywhere-degenerate harmonic morphism, i.e., it satisfies the system

$$
\begin{equation*}
\text { (a) } \quad \Delta^{M} \varphi=0, \quad \text { (b) }\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{M}=0 \tag{4.2}
\end{equation*}
$$

In the Lorentzian case this gives
Lemma 4.2. Let $\varphi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ satisfy

$$
\begin{equation*}
\tau\left(\varphi\left(x_{1}, x_{2}, \ldots, x_{m}\right), x_{2}, \ldots, x_{m}\right)=x_{1} \tag{4.3}
\end{equation*}
$$

Then φ satisfies the system

$$
\begin{equation*}
\text { (a) } \square \varphi=0, \quad \text { (b) }\langle\operatorname{grad} \varphi, \operatorname{grad} \varphi\rangle_{1}=0 \tag{4.4}
\end{equation*}
$$

if and only if, for each fixed x_{1}, τ satisfies the system

$$
\begin{equation*}
\text { (a) } \quad \Delta^{\mathbb{R}^{m-1}} \tau=0, \quad \text { (b) } \quad\langle\operatorname{grad} \tau, \operatorname{grad} \tau\rangle_{\mathbb{R}^{m-1}}=1 \tag{4.5}
\end{equation*}
$$

that is, φ is a null solution to the wave equation if and only if, on each slice $x_{1}=$ const., τ is a harmonic function with $|\operatorname{grad} \tau|^{2}=1$.

Proof: Set $G\left(\varphi, x_{1}, x_{2}, \ldots, x_{m}\right)=\tau\left(\varphi, x_{2}, \ldots, x_{m}\right)-x_{1}$. Then

$$
\left(\frac{\partial G}{\partial x_{1}}, \frac{\partial G}{\partial x_{2}}, \ldots, \frac{\partial G}{\partial x_{m}}\right)=\left(-1, \frac{\partial \tau}{\partial x_{2}}, \ldots, \frac{\partial \tau}{\partial x_{m}}\right)
$$

so that

$$
\begin{aligned}
\langle\operatorname{grad} G, \operatorname{grad} G\rangle_{1} & =\langle\operatorname{grad} \tau, \operatorname{grad} \tau\rangle_{\mathbb{R}^{m-1}}-1 \quad \text { and } \\
\square G \equiv \Delta^{\mathbb{M}^{m}} G & =\Delta^{\mathbb{R}^{m-1}} \tau .
\end{aligned}
$$

The result follows.

Solutions of the system (4.5) are easy to find, as follows.
Lemma 4.3. Any C^{2} solution $\varphi: U \rightarrow \mathbb{R}$ on an open subset of \mathbb{R}^{m-1} to the system (4.5) is affine, i.e.,

$$
\begin{equation*}
\tau\left(x_{2}, \ldots, x_{m}\right)=\ell_{1}+\sum_{i=2}^{m} \ell_{i} x_{i} \tag{4.6}
\end{equation*}
$$

for some constants $\ell_{1}, \ell_{2}, \ldots, \ell_{m}$ with $\sum_{i=2}^{m} \ell_{i}^{2}=1$.
Proof: Since τ is harmonic, it is smooth. Set $T=\operatorname{grad} \tau: U \rightarrow \mathbb{R}^{m}$. Then T is harmonic and has image in the unit sphere. By the maximum principle, T is constant. Indeed, choose any point $p \in U$ and set $\ell=T(p)$. Then the function $\boldsymbol{x} \mapsto\langle T(\boldsymbol{x}), \ell\rangle$ is harmonic and has a maximum at p and so is constant. Integrating yields (4.6).

We deduce the following result.
Theorem 4.4. (Collins [6]) Let $\varphi: U \rightarrow \mathbb{R}$ be a null C^{2} solution to the wave equation, i.e. a solution to (4.4), on an open set of \mathbb{M}^{m}. Suppose that $\partial \varphi / \partial x_{1} \neq 0$. Then, locally, $z=\varphi\left(x_{1}, \ldots, x_{m}\right)$ satisfies

$$
\begin{equation*}
\ell_{1}(z)+\sum_{i=2}^{m} \ell_{i}(z) x_{i}=x_{1} \tag{4.7}
\end{equation*}
$$

for some C^{2} functions $\ell_{1}, \ell_{2}, \ldots, \ell_{m}: V \rightarrow \mathbb{R}$ defined on an open subset of \mathbb{R} with $\sum_{i=2}^{m} \ell_{i}^{2}=1$.
Conversely, any C^{2} solution to (4.7) is a null solution to the wave equation.
Proof: By the implicit function theorem we can solve $\varphi\left(x_{1}, x_{2}, \ldots, x_{m}\right)=z$ to give

$$
\begin{equation*}
x_{1}=\tau\left(z, x_{2}, \ldots, x_{m}\right) \tag{4.8}
\end{equation*}
$$

Then, by Lemma 4.2, on each slice $x_{1}=$ const., τ satisfies (4.5). By Lemma 4.3, $\left.\tau\right|_{x_{1}=\text { const. }}$ is affine, thus,

$$
\tau\left(z, x_{2}, \ldots, x_{m}\right)=\ell_{1}(z)+\sum_{i=2}^{m} \ell_{i}(z) x_{i}
$$

with $\sum_{i=2}^{m} \ell_{i}^{2}=1$. Then (4.8) yields (4.7).

Corollary 4.5. The level sets of a C^{2} null solution to the wave equation are degenerate hyperplanes.
Corollary 4.6. Any C^{2} harmonic morphism $\varphi: U \rightarrow \mathbb{R}, \quad z=\varphi\left(x_{1}, x_{2}, x_{3}\right)$ from an open subset of $\mathbb{M}^{3}=\mathbb{R}_{1}^{3}$ which is submersive and degenerate everywhere is locally the solution to an equation

$$
\begin{equation*}
-x_{1}+\cos \theta(z) x_{2}+\sin \theta(z) x_{3}=r(z) \tag{4.9}
\end{equation*}
$$

for some C^{2} functions $\theta, r: V \rightarrow \mathbb{R}$ defined on an open subset of \mathbb{R}.
Conversely, any C^{2} solution to this equation on an open subset of \mathbb{R}_{1}^{3} is a harmonic morphism which is degenerate everywhere.

References

[1] G. Bădiţoiu and S. IAnuş, Semi-Riemannian submersions from real and complex pseudohyperbolic spaces, Differential Geom. Appl. 16 (2002), 79-94.
[2] P. Baird and J. Eells, A conservation law for harmonic maps, Geometry Symposium (Utrecht, 1980), Lecture Notes in Mathematics, vol 894 (1981), 1-25.
[3] P. Baird and J. C. Wood, Bernstein theorems for harmonic morphisms from \mathbb{R}^{3} and S^{3}, Math. Ann., 280 (1988), 579-603.
[4] P. Baird and J.C. Wood, Harmonic Morphisms between Riemannian Manifolds, London Math. Soc. Monograph, New Series, vol. 29, Oxford University Press 2003; see http://www.maths.leeds.ac.uk/Pure/staff/wood/BWBook/BWBook.html for details and list of corrections.
[5] P. Baird and J. C. Wood, Harmonic morphisms and shear-free ray congruences, Bull. Belg. Math. Soc. 5 (1998), 549-564; for a revised and expanded version, see http://www.maths.leeds.ac.uk/Pure/staff/wood/BWBook/BWBook.html
[6] C.B. Collins, Complex potential equations I. A technique for solution, Math. Proc. Cambridge Philos. Soc., 80 (1976), 165-187.
[7] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble), 28 (2), (1978), 107-144.
[8] B. Fuglede, Harmonic morphisms between semi-Riemannian manifolds, Acad. Sci. Fenn., 21, (1996), 31-50.
[9] S. Ianuş and A.M. Pastore, Some foliations and harmonic morphisms, Rev. Roumaine Math. Pures Appl. 50 (2005), 671-676.
[10] T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19, (1979), 215-229.
[11] M. Falcitelli, S. Ianuş and A.M. Pastore, Riemannian submersions and related topics, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
[12] C.G.J. Jacobi, Über eine Lösung der partiellen Differentialgleichung $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$, J. Reine Angew. Math., 36 (1848), 113-134.

Received: 23.01.2009.

Département de Mathématiques,
Université de Bretagne Occidentale,
6 Avenue Le Gorgeu, 29285 Brest, France
E-mail: Paul.Baird@univ-brest.fr

Department of Pure Mathematics,
University of Leeds
Leeds LS2 9JT, Great Britain
E-mail: j.c.wood@leeds.ac.uk

[^0]: *JCW thanks the Gulbenkian foundation, $C M A F$ and the Faculdade de Ciências, Universidade de Lisboa, for support and hospitality during part of the preparation of this work

