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Abstract

Globally framed f -manifolds are studied from the point of view of the curvature. Gener-

alized globally framed f -space-forms are introduced and the interrelation with generalized

Sasakian and generalized complex space-forms is pointed out. Suitable differential equa-

tions allow to discuss the constancy of the ϕ-sectional curvatures. Further results are

stated when the underlying structure is a K-structure or an f.pk-structure of Kenmotsu

type.
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Introduction

The study of the curvature and the classification of Riemannian manifolds under suitable curvature

restrictions are classical problems. Analogous topics are treated in the context of almost Hermitian

or contact Geometry. In particular, in [21], Tricerri and Vanhecke classified almost Hermitian mani-

folds M2n which are generalized complex space-forms, in dimension 2n ≥ 6, whereas, in [20], Olszak

stated the classification of such spaces for n = 2. In the context of almost contact metric manifolds,

Alegre, Blair and Carriazo introduced the concept of generalized Sasakian-space-form, proving partial

classification results. Even if the problem of the classification of these spaces is quite far from being

solved, several efforts on the subject are due to Bueken and Vanhecke ([6]) and to Kim ([17]). In this

paper, we extend the notion of generalized Sasakian-space-form to the class of metric f.pk -manifolds

(M2n+s, ϕ, ξi, η
i, g), i ∈ {1, . . . , s}. We call them generalized f.pk-space-forms, requiring that the cur-

vature involves a set of smooth functions F1, F2, Fij , with Fij = Fji for i, j ∈ {1, . . . , s}. General

properties and a characterization of generalized f.pk-space-forms are obtained. In particular, one gets

the pointwise constancy of the ϕ-sectional curvatures c = F1 + 3F2. Several applications of the second

Bianchi identity allow to relate the 1-forms dF1, dF2, dFij to the covariant derivatives ∇ϕ, ∇ηi, ∇

denoting the Levi-Civita connection. We discuss the constancy of the functions F1, F2 along the distri-

bution D = Imϕ, which in this case is CR-integrable. This allows to clarify the interrelation between

generalized f.pk-space-forms and generalized complex space-forms. The last two sections deal with the

spaces whose underlying f.pk-structure is of a particular type, namely it is either a K-structure ([9])

or an f.pk-structure of Kenmotsu type ([11]).
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All manifolds are assumed to be connected. For the curvature of a Riemannian manifold we adopt

the definitions R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ] and R(X, Y, Z, W ) = g(X, R(Z, W, Y )). We also use the

Einstein convention, omitting the sum symbol for repeated indexes, if there is no doubt.

Acknowledgments. The author wish to thank Professor Stere Ianus for his long, precious collab-

oration and for his great friendship.

1 Preliminaries

In the class of f -structures introduced in 1963 by Yano [22], particularly interesting are the so-called

f -structures with complemented frames, also called globally framed f -structures or f -structures with

parallelizable kernel (briefly f.pk-structures) ([3, 14, 10]). An f.pk-manifold is a manifold M2n+s on

which is defined an f -structure, that is a (1, 1)-tensor field ϕ satisfying ϕ3 + ϕ = 0, of rank 2n, such

that the subbundle ker ϕ is parallelizable. Then, there exists a global frame {ξi}, i ∈ {1, . . . , s}, for

the subbundle ker ϕ, with dual 1-forms ηi, satisfying ϕ2 = −I + ηi ⊗ ξi, ηi(ξj) = δi
j , from which

ϕξi = 0, ηi ◦ ϕ = 0 follow. An f.pk-structure on a manifold M2n+s is said to be normal if the tensor

field N = [ϕ, ϕ] + 2dηi ⊗ ξi vanishes, [ϕ, ϕ] denoting the Nijenhuis torsion of ϕ. It is known that one

can consider a Riemannian metric g on M2n+s associated with an f.pk-structure (ϕ, ξi, η
i), such that

g(ϕX, ϕY ) = g(X, Y ) −
Ps

i=1 ηi(X)ηi(Y ), for any X, Y ∈ Γ(TM2n+s), and the structure (ϕ, ξi, η
i, g)

is then called a metric f.pk-structure. Therefore, TM2n+s splits as complementary orthogonal sum of

its subbundles Im ϕ and ker ϕ. We denote their respective differentiable distributions by D and D⊥.

Let Φ denote the 2-form on M2n+s defined by Φ(X, Y ) = g(X, ϕY ), for any X, Y ∈ Γ(TM2n+s).

Several subclasses have been studied from different points of view ([3, 4, 7, 10, 9, 11, 12]), also

dropping the normality condition and, in this case, the term almost precedes the name of the considered

structures or manifolds. As in ([3]), a metric f.pk-structure is said a K-structure if it is normal and the

fundamental 2-form Φ is closed; a manifold with a K-structure is called a K-manifold. In particular,

if dηi = Φ, for all i ∈ {1, . . . , s}, the K-structure is said an S-structure and M2n+s an S-manifold.

Finally, if dηi = 0 for all i ∈ {1, . . . , s}, then the K-structure is called a C-structure and M2n+s is said

a C-manifold. Obviously, if s = 1, a K-manifold M2n+1 is a quasi Sasakian manifold, a C-manifold is a

cosymplectic manifold and an S-manifold is a Sasakian manifold.

We recall that the Levi-Civita connection ∇ of a metric f.pk-manifold satisfies the following formula

([3, 10]):

2g((∇Xϕ)Y, Z) = 3 dΦ(X, ϕY, ϕZ) − 3dΦ(X, Y, Z)

+g(N(Y, Z), ϕX) + N
(2)
j (Y, Z)ηj(X)

+2dηj(ϕY, X)ηj(Z) − 2dηj(ϕZ, X)ηj(Y ),

(1)

where N
(2)
j is given by N

(2)
j (X, Y ) = 2dηj(ϕX, Y ) − 2dηj(ϕY, X).

Furthermore, for S-manifolds we have ∇Xξj = −ϕX, j = 1, . . . , s, ([3]). Putting ξ =
Ps

j=1 ξj ,

η =
Ps

j=1 ηj is its dual form with respect to g and

(∇Xϕ)Y = g(ϕX, ϕY )ξ + η(Y )ϕ2(X). (2)

We remark that (2) together with Lξi
g = 0 and Lξi

ηj = 0, i, j ∈ {1, . . . , s}, characterizes the S-

manifolds among the metric f.pk-manifolds.

A metric f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) has pointwise constant (p.c.) ϕ-sectional curvature if

at any p ∈ M2n+s, c(p) = Rp(X, ϕX, X, ϕX) does not depend on the ϕ-section spanned by {X, ϕX},

for any unit X ∈ Dp. Several results involving the pointwise constancy of the ϕ-sectional curvatures

of an almost contact metric manifold (i.e. for s = 1) are recently obtained in [1, 2, 6, 17]. We refer to

[5] for a systematic exposition of the classical curvature results on contact metric manifolds. We recall

some known results.
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Proposition 1. A Sasaki manifold (M2n+1, ϕ, ξ, η, g) has p.c. ϕ-sectional curvature c ∈ F(M2n+1) if

and only if its curvature tensor field verifies

R(X, Y, Z) = c+3
4

{g(Y, Z)X − g(X, Z)Y }

+ c−1
4

{g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ

+η(X)η(Z)Y − η(Y )η(Z)X

+g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}

(3)

for any X, Y, Z ∈ Γ(TM2n+1).

A Sasaki manifold M2n+1 with constant ϕ-sectional curvature c ∈ R is called a Sasakian-space-

form and denoted by M2n+1(c). It is well known that, if n ≥ 2, a Sasaki manifold M2n+1 with p.c.

ϕ-sectional curvature c is a Sasakian-space-form.

Definition 1. ([1, 6]) An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is a generalized Sasakian-

space-form, denoted by M2n+1(f1, f2, f3), if it admits three smooth functions f1, f2, f3 such that its

curvature tensor field verifies, for any X, Y, Z ∈ Γ(TM2n+1),

R(X, Y, Z) = f1{g(Y, Z)X − g(X, Z)Y }

+f2{g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ}

+f3{η(X)η(Z)Y − η(Y )η(Z)X

+g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}

(4)

Remark 1. Any generalized Sasakian-space-form has p.c. ϕ-sectional curvature c = f1 + 3f2. Ob-

viously, a Sasaki manifold of p.c. ϕ-sectional curvature c satisfies (4) with f1 = (c + 3)/4, and

f2 = f3 = (c − 1)/4. A cosymplectic manifold with p.c. ϕ-sectional curvature c satisfies (4) with

f1 = f2 = f3 = c/4.

Proposition 2. ([19, 3]) An S-manifold M2n+s has p.c. ϕ-sectional curvature c ∈ F(M2n+s) if and

only if its curvature tensor field verifies

R(X, Y, Z) = c+3s
4

{g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}

+ c−s
4

{g(Z, ϕY )ϕX − g(Z, ϕX)ϕY + 2g(X, ϕY )ϕZ}

+η̄(X)η̄(Z)ϕ2Y − η̄(Y )η̄(Z)ϕ2X

+g(ϕY, ϕZ)η̄(X)ξ̄ − g(ϕX, ϕZ)η̄(Y )ξ̄,

(5)

for any X, Y, Z ∈ Γ(TM2n+s).

An S-manifold M2n+s with constant ϕ-sectional curvature c ∈ R is called an S-space-form and

denoted by M2n+s(c). Moreover, it is also well known that if n ≥ 2 then an S-manifold with p.c.

ϕ-sectional curvature c is an S-space-form. We remark that for s = 1 (5) reduces to (3).

2 Generalized f.pk-space-forms

Proposition 3. Let (M2n+s, ϕ, ξi, η
i, g) be a metric f.pk-manifold. Then we have

a) g(ϕ(∇Xϕ)Y, Z) + g((∇Xϕ)ϕY, Z) = 0, for any Y, Z ∈ D

b) g(ϕ(N(Y, Z)) + N(ϕY, Z), X) = 0, for any X, Y ∈ D,

c) 2g((∇Xϕ)Y, Z) = 3 dΦ(X, ϕY, ϕZ) − 3dΦ(X, Y, Z) + g(N(Y, Z), ϕX), for any X, Y, Z ∈ D.
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Proof: Covariantly differentiating ϕ2 = −I + ηk ⊗ ξk with respect to any X ∈ Γ(TM2n+s), we get

ϕ ◦ (∇Xϕ) + (∇Xϕ) ◦ϕ = (∇Xηk)⊗ ξk + ηk ⊗∇Xξk and the first relation follows. We obtain b) since,

for Y, Z ∈ Γ(TM2n+s), using the definition of N , we have

ϕ(N(Y, Z)) = −N(ϕY, Z) − ηk([Y, ϕZ]ξk + ηk(Y )[ξk, ϕZ]

−ϕ(Z)(ηk(Y ))ξk − ηk(Y )ϕ([ξk, Z]) + 2dηk(ϕY, Z)ξk.

Finally, c) follows from (1).

Let F denote any set of smooth functions Fij on M2n+s such that Fij = Fji for any i, j ∈ {1, . . . , s}.

Definition 2. A generalized f.pk-space-form, denoted by M2n+s(F1, F2,F), is a metric f.pk-manifold

(M2n+s, ϕ, ξi, η
i, g) which admits smooth functions F1, F2,F such that its curvature tensor field verifies

R(X, Y, Z) = F1{g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X}

+F2{g(Z, ϕY )ϕX − g(Z, ϕX)ϕY + 2g(X, ϕY )ϕZ}

+
Ps

i,j=1 Fij{η
i(X)ηj(Z)ϕ2Y − ηi(Y )ηj(Z)ϕ2X

+g(ϕY, ϕZ)ηi(X)ξj − g(ϕX, ϕZ)ηi(Y )ξj},

(6)

For s = 1, we obtain a generalized Sasakian-space-form M2n+1(f1, f2, f3) with f1 = F1, f2 = F2

and f3 = F1 − F11. In particular, if the given structure is either Sasakian, or Kenmotsu, or possibly

cosymplectic, then (6) holds with F11 = 1, F1 = (c+3)/4, F2 = (c−1)/4 and f3 = F1−F11 = (c−1)/4 =

f2 in the first case, F11 = −1, F1 = (c − 3)/4, F2 = (c + 1)/4 and f3 = F1 − F11 = (c + 1)/4 = f2 in

the second case, and F11 = 0, F1 = c/4, F2 = c/4 and f3 = c/4 in the last case.

From (6), by direct computations, we get the following links between the curvatures and the func-

tions in F .

Proposition 4. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form. We have:

1) the ϕ-sectional curvature is p.c. c = F1 + 3F2,

2) R(X, ξh, X, ξk) = Fhk, for any unit X ∈ D and any h, k ∈ {1, . . . , s},

3) for any unit X ∈ D, for the sectional curvature we get K(ξk, X) = Fkk and K(ξ̄, X) =
Ps

h,k=1 Fhk.

Proposition 5. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form. For any k ∈ {1, . . . , s} we

have:

1) R(X, ξk, Z) = −
Ps

j=1 Fkj{g(ϕZ, ϕX)ξj + ηj(Z)ϕ2(X)}, for any X, Z,

2) R(X, Z, ξk) =
Ps

j=1 Fkj{η
j(X)ϕ2(Z) − ηj(Z)ϕ2(X)}, for any X, Z,

3) R(X, ξk, Z) = −g(Z, X)
Ps

j=1 Fkjξj, X, Z ∈ D,

4) R(X, Z, ξk) = 0, X, Z ∈ D.

We consider the (0, 4) tensor field P defined by

P (X, Y, Z, W ) = g(X, ϕZ)g(Y, W ) − g(X, ϕW )g(Y, Z)

−g(Y, ϕZ)g(X, W ) + g(Y, ϕW )g(X, Z).
(7)

Proposition 6. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form. For any X, Y, Z, W ∈ D, we

have:

1) g(R(X, Y, Z), ϕW ) + g(R(X, Y, ϕZ), W ) = (F2 − F1)P (X, Y, Z, W ),

2) R(X, Y, ϕX, ϕY ) = R(X, Y, X, Y ) + (F1 − F2)P (X, Y, ϕX, Y ),

3) R(ϕX, ϕY, ϕZ, ϕW ) = R(X, Y, Z, W ),

4) R(X, ϕX, Y, ϕY ) = R(X, Y, X, Y ) + R(X, ϕY, X, ϕY ) − 2(F2 − F1)P (X, Y, X, ϕY ).
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Proposition 7. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form such that ∇ξk = −ϕ for any

k ∈ {1, . . . , s}. Then, M2n+s is an S-manifold, F1 = (c + 3s)/4, F2 = (c − s)/4 and Fij = 1 for any

i, j ∈ {1, . . . , s}.

Proof: Since ∇ξk = −ϕ implies that ξk is Killing and Lξk
ηh = 0 for any h, k ∈ {1, . . . , s}, we have

R(X, ξk, Z) = ∇X∇Zξk −∇∇XZ ξk = −(∇Xϕ)Z and, from Proposition 5,

(∇Xϕ)Z =
s

X

j=1

Fkj{g(ϕZ, ϕX)ξj + ηj(Z)ϕ2X}.

It follows that, for any h, k ∈ {1, . . . , s} and X, Z ∈ Γ(TM2n+s)

g(ϕZ, ϕX)
s

X

j=1

Fkjξj = g(ϕZ, ϕX)
s

X

j=1

Fhjξj , .

Hence we get Fhj = Fkj = F11 and (∇Xϕ)Z = F11{g(ϕZ, ϕX)ξ̄ + η̄(Z)ϕ2X}. Then, putting Z = ξk,

using ∇ξk = −ϕ, we obtain F11 = 1 and (∇Xϕ)Z = g(ϕZ, ϕX)ξ̄ + η̄(Z)ϕ2X, which, together with

Lξk
ηh = 0 and the Killing condition on the ξi’s, characterizes the S-manifolds. Finally, for such

manifolds we have g(R(X, Y, Z), ϕW ) + g(R(X, Y, ϕZ), W ) = −sP (X, Y, Z, W ), hence F1 − F2 = s,

which, being F1 + 3F2 = c, gives F2 = (c − s)/4 and F1 = (c + 3s)/4.

Proposition 8. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form such that any ξk is a parallel

vector field. Then, Fij = 0 for any i, j ∈ {1, . . . , s}.

Proof: Since ∇ξk = 0, we have R(X, ξk, Z) = 0 for any k ∈ {1, . . . , s} and X, Z ∈ Γ(TM2n+s). Then,

Proposition 5 implies
Ps

j=1 Fkjξj = 0, for any k ∈ {1, . . . , s}, from which we obtain Fkj = 0.

Remark 2. If M2n+s(F1, F2,F) is a generalized f.pk-space-form with an underlying C-structure, then

any ξk is a parallel vector field and Fij = 0 for any i, j ∈ {1, . . . , s}. Moreover, g(R(X, Y, Z), ϕW ) +

g(R(X, Y, ϕZ), W ) = 0 and so F1 = F2 which together with F1 + 3F2 = c gives F2 = F1 = c/4.

Proposition 9. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form and suppose that ∇ξk = 0 for

k ≥ 2 and ∇ξ1 = −ϕ2. Then F11 = −1 and Fij = 0 for any (i, j) 6= (1, 1).

Proof: Since ∇ξk = 0, for k ≥ 2, arguing as in the above Proposition, we have Fkj = 0, for any

(k, j) 6= (1, 1). From Proposition 5 we get R(X, Y, ξ1) = F11{−η1(Y )ϕ2X + η1(X)ϕ2Y }, while, by

direct computation, we have R(X, Y, ξ1) = η1(Y )ϕ2X − η1(X)ϕ2Y . Thus F11 = −1 follows.

Definition 3. Let (M2n+s, ϕ, ξi, η
i, g) be a metric f.pk-manifold and H a set of smooth functions Hij

on M2n+s such that Hij = Hji for any i, j ∈ {1, . . . , s}. For any p ∈ M2n+s we denote by Np(H) the

linear space consisting of the vectors Z such that

R(X, Y, Z) =
Ps

i,j=1 Hij{η
i(X)ηj(Z)ϕ2Y − ηi(Y )ηj(Z)ϕ2X

+g(ϕY, ϕZ)ηi(X)ξj − g(ϕX, ϕZ)ηi(Y )ξj}.}

We call N(H)-distribution the distribution p ∈ M2n+s → Np(H).

It is easy to verify that the distribution N(H) is integrable and any ξk belongs to it if and only if

R(X, Y, ξk) =
Ps

i=1 Hik{η
i(X)ϕ2Y − ηi(Y )ϕ2X}.

Now, we are able to state the following characterization.
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Theorem 1. A metric f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) is a generalized f.pk-space-form if and only

if

a) M2n+s has p.c. ϕ-sectional curvature c,

b) there exists a smooth function l ∈ F(M2n+s) such that for any X, Y ∈ D

R(X, Y, ϕX, ϕY ) − R(X, Y, X, Y ) = l P (X, Y, ϕX, Y )

c) all the vector fields ξk belong to an N(H)-distribution.

Proof: Let us suppose that M2n+s(F1, F2,F) is a generalized f.pk-space-form. Then a),b),c), are

satisfied with c = F1 + 3F2, l = F1 − F2 and H = F .

Vice versa, let M2n+s be a metric f.pk-manifold. By a direct computation, using the first Bianchi

identity, one proves the following formula for any X, Y ∈ D

6(R(X, Y, X, Y ) + R(ϕX, ϕY, ϕX, ϕY )) + 20R(X, Y, ϕX, ϕY )

−2(R(X, ϕY, X, ϕY ) + R(ϕX, Y, ϕX, Y ) + 2R(X, ϕY, ϕX, Y ))

= 3(D(X + ϕY ) + D(X − ϕY )) − 4(D(X) + D(Y ))

−D(X + Y ) − D(X − Y )

(8)

where D(X) = R(X, ϕX, X, ϕX). We denote by T1 and T2 the (1, 3)-tensor fields given by

T1(X, Y, Z) = g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X

T2(X, Y, Z) = g(Z, ϕY )ϕX − g(Z, ϕX)ϕY + 2g(X, ϕY )ϕZ

and with the same symbol the associated (0,4)-tensor fields, which are algebraic curvature tensor

fields, as it can be easily proved. By some computations we can rewrite the right side of (8) as

8c(T1 + T2)(X, Y, X, Y ) and we also obtain (3T1 − T2)(X, Y, X, Y ) = −3P (X, Y, ϕX, Y ). Using b) and

(8) we get R(X, Y, X, Y ) = ( c+3l
4

T1 + c−l
4

T2)(X, Y, X, Y ), from which, for any X, Y, Z, W ∈ D, we have

R(X, Y, Z, W ) =

„

c + 3l

4
T1 +

c − l

4
T2

«

(X, Y, Z, W ).

Finally, using c), with standard technique, we obtain that the tensor fields R and c+3l
4

T1+
c−l
4

T2 coincide

when computed on some or all ξk. Hence, the curvature tensor field R verifies (6) with F1 = (c+3l)/4,

F2 = (c − l)/4 and F = H, so M2n+s is a generalized f.pk-space-form.

3 The effects of the second Bianchi identity

Definition 4. An f.pk-space-form, denoted by M2n+s(F1, F2,F)(c), is a generalized f.pk-space-form

M2n+s(F1, F2,F) which has constant ϕ-sectional curvature c ∈ R.

Lemma 1. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, n ≥ 2. Then, for any choice of
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orthonormal vector fields X, Y, ϕY ∈ D and for any k, h ∈ {1, . . . , s}, we obtain:

ξk(F1) + F1{g(∇Xξk, X) + g(∇Y ξk, Y )}

−
Ps

j=1 Fkj{g(∇Xξj , X) + g(∇Y ξj , Y )} = 0

F1g(∇Y ξk, ϕY ) + F2g(X, ϕ∇Xξk) −
Ps

j=1 Fkjg(∇Y ξj , ϕY ) = 0

F1g(∇Y ξk, ϕX) − F2{3g(X, (∇ξk
ϕ)Y ) + 3g(X, ϕ∇Y ξk)

−2g(Y, ϕ∇Xξk)} −
Ps

j=1 Fkjg(∇Y ξj , ϕX) = 0

Y (Fkh) − F1η
h(∇ξk

Y ) +
Ps

i=1 Fihηi([ξk, Y ])

+
Ps

j=1 Fkjη
h(∇Y ξj) = 0

ξk(F2) + F2(g(∇Xξk, X) + g(∇Y ξk, Y )) = 0.

(9)

Proof: We apply the second identity Sξk,X,Y ((∇ξk
R)(X, Y ))Z = 0 to X, Y, Z vector fields in D with

‖X‖ = ‖Y ‖ = 1 and g(Y, X) = g(ϕY, X) = 0, and choosing Z = X, we obtain

0 = −ξk(F1)Y +
Ps

j=1 Y (Fkj)ξj

+F1{η
t([Y, ξk])ξt − g(∇Xξk, X)Y + g(∇Y ξk, X)X −∇Y ξk}

+F2{3g(X, (∇ξk
ϕ)Y )ϕX + 3g(X, ϕ∇Y ξk)ϕX

−g(X, ϕ∇Xξk)ϕY − 2g(Y, ϕ∇Xξk)ϕX}

+
Ps

i,j=1 Fij{η
i([ξk, Y ])ξj − δi

kηj(∇XX)Y

+δi
k∇Y ξj + δi

kηj(∇Y X)X}.

Taking the scalar product with Y, ϕY, ϕX and any ξh we obtain the first four equations. Analogously,

putting Z = ϕX, we get the last equation.

Lemma 2. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, n ≥ 2. Then, for any choice of

orthonormal vector fields X, Y, ϕY ∈ D, we have

Y (F1) + 3F2g(X, (∇Xϕ)ϕY ) = 0

2X(F2) = 3F2{g(X, (∇ϕY ϕ)Y ) − g(X, (∇Y ϕ)ϕY )}

F1η
t([ϕY, Y ]) − Fit ηi([ϕY, Y ]) + 2F2g((∇Xϕ)X, ξt) = 0, for any t.

(10)

Proof: We apply the second Bianchi identity SW,X,Y ((∇W R)(X, Y ))Z = 0 to X, Y, Z, W vector fields

in D. Then, choosing Z = X, W = ϕY , ‖X‖ = ‖Y ‖ = 1 and g(Y, X) = g(ϕY, X) = 0, we obtain

0 = −ϕY (F1)Y − 2X(F2)ϕX + Y (F1)ϕY − F1η
k([ϕY, Y ])ξk

+F2{3g(X, (∇ϕY ϕ)Y )ϕX − 3g(X, (∇Y ϕ)ϕY )ϕX

+g(X, (∇Xϕ)ϕY )ϕY + g(X, (∇Xϕ)Y )Y − 2(∇Xϕ)X}

+
Ps

i,j=1 Fijη
i([ϕY, Y ])ξj .

Taking the scalar product with ϕY, ϕX and any ξt we get (10).

Theorem 2. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, n ≥ 2, and assume F2 = 0. If

g(∇Xξk, X) = 0, for any X ∈ D and k ∈ {1, . . . , s}, then c = F1 is constant.

Proof: The statement follows from the first equations in (9) and (10).
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Theorem 3. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, n ≥ 2, and assume that F2 never

vanishes.

1) If n = 2, then F1 and F2 are constant along D if and only if dΦ = 0 on D.

2) If n ≥ 3, then F1 and F2 are constant along D.

Furthermore, if g(∇Xξk, X) = 0 for any X ∈ D and k ∈ {1, . . . , s}, then, in both cases, F1, F2 and c

are constant on M2n+s.

Proof: We consider orthonormal vector fields X, Y, ϕY in D and from Lemma 2, since also ϕX, Y, ϕY

are orthonormal, we have

Y (F1) + 3F2g(ϕX, (∇ϕXϕ)ϕY ) = 0 (11)

which, together the first equation in (10), implies

g(X, (∇Xϕ)ϕY ) − g(ϕX, (∇ϕX ϕ)ϕY ) = 0.

Using b) and c) of Proposition 3, we get

g(N(X, Y ), X) = 0. (12)

Moreover, interchanging X and Y in the second equation in (10), we obtain

2Y (F2) = 3F2{g(Y, (∇ϕXϕ)X) − g(Y, (∇Xϕ)ϕX)}

and

Y (F1 + F2) = 0, Y (F1 − F2) = 9F2dΦ(X, Y, ϕX). (13)

It follows that dΦ(X, Y, ϕX) = 0 with g(Y, X) = g(Y, ϕX) = 0, is a necessary and sufficient condition

to obtain that F1, F2, c are constant along D. Moreover, for n = 2 such a condition is equivalent to

dΦ = 0 on D and 1) is proved.

Now, to prove 2), fixed X, Y ∈ D and {X1, ...., X2n} as local orthonormal basis of D, we apply

the Bianchi identity SX,Xh,Y ((∇XR)(Xh, Y ))ϕXh = 0. Then, summing over h and using the first

condition in (13), we get

(1 − 2n)X(F2)ϕY + (2n − 1)Y (F2)ϕX − ϕY (F2)X + ϕX(F2)Y

−2g(Y, ϕX)
P

h Xh(F2)Xh

+F1

P

i{(∇Xηi)ϕY − (∇Y ηi)ϕX + (∇ϕXηi)Y − (∇ϕY ηi)X}ξi

−
P

i,q Fiq{(∇Xηi)ϕY − (∇Y ηi)ϕX + (∇ϕXηi)Y − (∇ϕY ηi)X}ξq

+F2{2n((∇Y ϕ)X − (∇Xϕ)Y ) +
P

h g((∇Y ϕ)X − (∇Xϕ)Y, Xh)Xh

−2
P

h g((∇Xh
ϕ)X, Y )Xh + 2g(Y, ϕX)

P

h(∇Xh
ϕ)ϕXh

+
P

h g((∇Xh
ϕ)ϕXh, Y )ϕX −

P

h g((∇Xh
ϕ)ϕXh, X)ϕY } = 0.

(14)

Assuming g(Y, X) = g(Y, ϕX) = 0, ‖Y ‖ = ‖X‖ = 1 and taking the scalar product with Y , we get

ϕX(F2) + (2n − 1)F2g((∇Y ϕ)X, Y ) = 0. Moreover, we apply (11) replacing Y and X with ϕX and

−ϕY , respectively, and since ϕX(F2) = −ϕX(F1) we get ϕX(F2) = −3F2g((∇Y ϕ)X, Y ). Then, we

obtain (2n − 4)F2g((∇Y ϕ)X, Y ) = 0. It follows that, if n ≥ 3,

g((∇Y ϕ)Y, X) = 0 (15)

for g(Y, X) = g(Y, ϕX) = 0. Hence ϕX(F2) = 0 and we obtain the constancy of F2, F1, c along D.

Finally, the first and last equation in (9) and the hypothesis g(∇Xξk, X) = 0 imply ξk(F1) = ξk(F2) = 0.

Hence ξk(c) = 0, concluding the proof.
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Remark 3. If n = 2, by Proposition 3 b) and (12) we get g(N(X, Y ), Z) = 0 for any vector fields

X, Y, Z ∈ Γ(TM4+s). Furthermore, if the ξk’s are Killing vector fields, and, for n = 2, dΦ = 0 on

D, then M2n+s is an f.pk-space-form. Moreover, the condition g(∇Xξk, X) = 0 for any X ∈ D and

k ∈ {1, . . . , s}, which influences the dependence of F1 and F2 on the ξk’s, implies that the ξk’s are

Killing vector fields on D.

Theorem 4. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, n ≥ 2, and assume that F2 never

vanishes. If either n = 2 and dΦ = 0 on D, or n ≥ 3, then F1, F2 are constant along D. Furthermore,

we have

g((∇Xϕ)Y, Z) = 0. (16)

for any X, Y, Z ∈ D and D is a CR-integrable distribution.

Proof: Let us suppose n = 2 and dΦ = 0 on D. Then (16) follows from c) of Proposition 3 and

g(N(X, Y ), Z) = 0 for any X, Y, Z ∈ Γ(TM4+s). Now, we assume n ≥ 3. Since g((∇Y ϕ)Y, Y ) =

g((∇Y ϕ)Y, ϕY ) = 0, taking account of (15), we have g((∇Y ϕ)Y, X) = 0, for any X ∈ D. By polariza-

tion, for any X, Y, Z ∈ D we get

g((∇Y ϕ)Z, X) + g((∇Zϕ)Y, X) = 0 (17)

Then, in (14), we take the scalar product with any Z ∈ D, use (17) and F2 6= 0, obtain g((∇Zϕ)Y, X)−

(2n + 1)g((∇Y ϕ)Z, X) = 0. Then, using (17), we get (16).

As concerns the functions Fhk, we have the following result.

Theorem 5. Let M2n+s be a generalized f.pk-space-form, n ≥ 2 such that g(∇Xξk, X) = 0 for any

X ∈ D and k ∈ {1, . . . , s}. Then, for any Y ∈ D and h, k, t ∈ {1, . . . , s}, we have

Y (Fkh) − F1η
h(∇ξk

Y ) +
Ps

i=1 Fihηi([ξk, Y ])

+
Ps

j=1 Fkjη
h(∇Y ξj) = 0

ξh(Fkt) − ξk(Fht) −
Ps

j=1 Fkjη
j(∇ξh

ξt) +
Ps

j=1 Fhjη
j(∇ξk

ξt)

−
Ps

j=1 Fjtη
j([ξh, ξk]) = 0.

Proof: The first equation is the fourth equation in (9). To determine the dependence of the functions

Fhk on the ξj ’s, we apply the second Bianchi identity SW,ξh,ξk
((∇W R)(ξh, ξk))Z = 0 with W, Z ar-

bitrary vector fields in D and h, k ∈ {1, . . . , s}. Then, we consider the component in D⊥ and using

Proposition 3 a), we obtain

0 = (ξh(Fkj) − ξk(Fhj))g(Z, W )ξj

+
Ps

i,j=1 Fij{g(Z,∇W ξh)δi
kξj − g(Z,∇W ξk)δi

hξj

+g(Z, W )(δi
k(∇ξh

ξj)
D⊥

− δi
h(∇ξk

ξj)
D⊥

− ηi([ξh, ξk]ξj)}.

Taking the scalar product with any ξt we get

0 = (ξh(Fkt) − ξk(Fht))g(Z, W ) + Fit{g(Z,∇W ξh)δi
k

−g(Z,∇W ξk)δi
h} − g(Z, W )Fkjη

j(∇ξh
ξt)

+g(Z, W )Fhjη
j(∇ξk

ξt) − g(Z, W )Fjtη
j([ξh, ξk]).

Finally, putting Z = W , ‖W‖ = 1, we complete the proof.
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We end this section remarking that the different behavior in the cases n = 2 and n ≥ 3 is, in a

certain sense, related to the results due to Tricerri and Vanhecke ([21]) and to Olszak ([20]). It is clear

that there exist f.pk-manifolds such that dΦ = 0 on D. This happens, for example, for K-manifolds and

for f.pk-manifolds of Kenmotsu type. However it can simply happen that dηk = 0 for all k ∈ {1, . . . , s}

and this implies that the distribution D is integrable. Then we can consider a 2n-dimensional integral

submanifold M̄ and using the Gauss equation we get that the second fundamental form is given by

α(X, Y ) = −
Ps

k=1 g(Y,∇Xξk)ξk and the curvature of M̄ satisfies the following formula, for X, Y, Z, W

tangent to M̄

R̄(X, Y, Z, W ) = R(X, Y, Z, W ) +
Ps

k=1{g(Z,∇Xξk)g(W,∇Y ξk)

−g(Z,∇Y ξk)g(W,∇Xξk)}.
(18)

Now, let M2n+s(F1, F2,F) be a generalized f.pk-space-form and suppose that F2 6= 0 everywhere

and any ξk is a parallel vector field. Then, by Proposition 8 we have Fij = 0 for any i, j ∈ {1, . . . , s}.

Furthermore, dηk = 0 and M2n+s is locally a Riemannian product of an integral submanifold of D

and R
s. Moreover, R̄(X, Y, Z, W ) = R(X, Y, Z, W ) = (F1π1 + F2π2)(X, Y, Z, W ), where π1(X, Y, Z) =

g(Z, Y )X − g(Z, X)Y and π2(X, Y, Z) = g(Z, ϕY )ϕX − g(Z, ϕX)ϕY +2g(X, ϕY )ϕZ. Hence (M̄, J, ḡ),

with J = ϕ|M̄ , ḡ = g|M̄ is a 2n-dimensional generalized complex space-form. Therefore, if n ≥ 3, by the

theorem of Tricerri and Vanhecke M̄ is a Kählerian space-form. Then dΦ = 0 on D and, by Theorem

3, M2n+s(F1, F2,F) is an f.pk-space-form. Furthermore, if dΦ vanishes everywhere, the underlying

structure is an almost C-structure with Kählerian leaves and, being ∇ξk = 0, it is a C-structure ([15]).

On the contrary, for n = 2, Olszak proved that there exist generalized complex space-forms with

F2 6= 0 everywhere and non constant, characterized as Bochner flat globally conformal Kähler manifold.

This allows to construct an example of (4 + s)-dimensional generalized f.pk-space-form with p.c., non

constant, ϕ-sectional curvature, which turns out to be the local model of such (4 + s)-dimensional

generalized f.pk-space-forms. In fact, one considers a 4-dimensional generalized complex space-form

(M̄, J, ḡ) with R̄ = f1π1 + f2π2, f2 nowhere vanishing and non constant, and the Riemannian product

M4+s = M̄ × R
s, with metric g = ḡ + g0, g0 being the standard metric on R

s. We put ξk = ∂

∂xk and

define a (1, 1)-tensor field ϕ putting ϕX̄ = JX̄ for X̄ ∈ Γ(TM̄), ϕξk = 0 for any k ∈ {1, . . . , s} and the

1-forms ηk by ηk(X) = g(X, ξk). It is easy to verify that (M4+s, ϕ, ξk, ηk, g) is a metric f.pk-manifold,

the ξk’s are parallel and the curvature satisfies (6) with any Fij = 0, F1 = f1 and F2 = f2 nowhere

vanishing and non constant.

4 K-manifolds and generalized f.pk-space-forms

We begin recalling some known results.

Lemma 3. ([14]) Let M2n+s be an f.pk-manifold with structure (ϕ, ξi, η
i, g). If M2n+s is normal then

we have: [ξi, ξj ] = 0, 2dηj(X, ξi) = −(Lξi
ηj)X = 0, Lξi

ϕ = 0, and dηi(ϕX, Y ) = −dηi(X, ϕY ), for any

i, j ∈ {1, . . . , s} and X, Y ∈ Γ(TM2n+s).

Since a K-manifold is a normal f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) with dΦ = 0, the s vector fields

ξi are Killing ([3]). Moreover, (1) reduces to

g((∇Xϕ)Y, Z) =
s

X

j=1

(dηj(ϕY, X)ηj(Z) − dηj(ϕZ, X)ηj(Y )). (19)

Hence ∇ξj
ϕ = 0, for any j ∈ {1, · · · , s}, and ∇ϕ = 0, if each dηj vanishes.
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Theorem 6. ([9]) Let (M2n+s, ϕ, ξi, η
i, g) be an f.pk-manifold. Then M2n+s is a K-manifold if and

only if Lξi
ηj = 0, for any i, j ∈ {1, . . . , s} and there exists a family of symmetric tensor fields of type

(1, 1), Ai, i ∈ {1, . . . , s} which commute with ϕ and satisfy

(∇Xϕ)Y =
s

X

i=1

{g(AiX, Y )ξi − ηi(Y )AiX}.

In [9] it is also proved that the tensor fields of type (1, 1), Ai, defined by Ai(X) = ϕ(∇Xξi), satisfy

the conditions in the previous theorem.

Theorem 7. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, with a K-structure and n ≥ 2.

If F2 = 0 or F2 never vanishes, then M2n+s has constant ϕ-sectional curvature c = F1 + 3F2 and

the functions in F depend on the direction of the ξk’s, only, according to ξh(Fkt) = ξk(Fht), for any

h, k, t ∈ {1, . . . , s}.

Proof: The statement follows from Theorem 5, since the structure is normal and the ξk’s are Killing.

Theorem 8. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form, with a K-structure, n ≥ 2, and

F2 6= 0 everywhere. Then M2n+s has constant ϕ-sectional curvature c = F1 + 3F2 and the functions in

F verify the following conditions:

Fkh =
tr(Ah ◦ Ak)

2n
, Fkk =

tr(A2
k)

2n
≥ 0, F 2

hk = FhhFkk.

Moreover, if n ≥ 3, then l = F1 − F2 =
Ps

k=1 Fkk is a constant.

Proof: We apply the second Bianchi identity Sξh,X,Y ((∇ξh
R)(X, Y ))ξk = 0 with X, Y unit vector

fields in D. and h, k ∈ {1, . . . , s}. Then, we obtain

0 = Fhkηj([X, Y ])ξj + Fij{η
i([ξh, X])δj

kY − ηi([ξh, Y ])δj
kX

−ηk([X, Y ])δi
hξj + ηk(∇Xξj)δ

i
hY − ηk(∇Y ξj)δ

i
hX}

and taking the scalar product with any ξt we have

Fhkηt([X, Y ]) + Fht{g(∇Xξk, Y ) − g(∇Y ξk, X)} = 0.

Since the ξi’s are Killing, we get g(X, Fhk∇Y ξt − Fht∇Y ξk) = 0. Being X ∈ D, we can write

g(ϕX, Fhkϕ(∇Y ξt) − Fhtϕ(∇Y ξk)) = 0, and we obtain FhkAt = FhtAk, for any h, k, t ∈ {1, . . . , s},

which also implies
s

X

i=1

FijAi =
s

X

i=1

FiiAj . (20)

Moreover, in this context, using (20), the second equation in (9) becomes

(F1 −

s
X

j=1

Fjj)g(AkY, Y ) − F2g(X, AkX) = 0.

We remark that (9), and then the above equation, holds for any unit vector fields X, Y ∈ D such that

g(X, Y ) = g(X, ϕY ) = 0. Now, each Ak, being a symmetric operator, is diagonalizable. Moreover each

ξi is an eigenvector with eigenvalue zero and if X ∈ D is an eigenvector, then ϕX is an eigenvector

corresponding to the same eigenvalue, since Ak commutes with ϕ. Therefore, we can construct a ϕ-basis

{X1, . . . Xn, ϕX1, . . . , ϕXn, ξ1, . . . , ξs} of eigenvectors. For any i, h ∈ {1, . . . , n}, i 6= h, we have

(F1 −
Ps

j=1 Fjj)g(AkXh, Xh) = F2g(Xi, AkXi)

(F1 −
Ps

j=1 Fjj)g(AkXi, Xi) = F2g(Xh, AkXh)
(21)
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Taking the trace we get (F1−F2−
Ps

j=1 Fjj)tr(Ak) = 0. Now we consider ∆ = (F1−
Ps

j=1 Fjj)
2−F 2

2 =

(F1 − F2 −
Ps

j=1 Fjj)(F1 + F2 −
Ps

j=1 Fjj) and observe that ∆ = 0. In fact if ∆ 6= 0, for any

k ∈ {1, . . . , s} locally we get Ak = 0 which implies ∇Xξk ∈ D⊥ and ∇ξk = 0, so dηk = 0. It follows

that, locally, M2n+s is a C-manifold and by Proposition 8 and Remark 2 we have Fij = 0, F1 = F2,

F1 − F2 −
Ps

j=1 Fjj = 0, obtaining a contradiction.

Hence we have ∆ = 0 and the factors can not be both zero since F2 nowhere vanishes. We claim that,

if n ≥ 3, we have

F1 − F2 −
s

X

j=1

Fjj = 0. (22)

Assuming F1 − F2 −
Ps

j=1 Fjj 6= 0, we get F1 + F2 −
Ps

j=1 Fjj = 0 and, from (21), g(AkXh, Xh) =

−g(Xi, AkXi), h 6= i. So for the eigenvalues we have λ1 = −λ2 = −λ3 = · · · = −λn and λ2 = −λ1 =

−λ3 = · · · = −λn, which, for n ≥ 3, gives Ak = 0, for any k ∈ {1, . . . , s}. As before one obtains a

contradiction, namely F1 − F2 −
Ps

j=1 Fjj = 0.

We remark that for n = 2 we obtain, Ak = diag(λ,−λ, λ,−λ, 0, . . . , 0), with respect to the ϕ-basis of

eigenvectors {X1, X2, ϕX1, ϕX2, ξ1, . . . , ξs}, and tr(A2
k) = 4λ2.

In any case, for n ≥ 2, using Proposition 4, ∇Xξk = −ϕ(AkX) and Theorem 6, we get for any X ∈ D

and k, h ∈ {1, . . . , s},

Fkh = g(AkX, AhX) = g((Ah ◦ Ak)X, X).

It follows that Fkh = 1
2n

tr(Ah ◦ Ak), Fkk = 1
2n

tr(A2
k), A2

k = − 1
2n

tr(A2
k)ϕ2, Fkk ≥ 0, F 2

hk = FhhFkk,

and, if n ≥ 3, l = F1 − F2 =
Ps

k=1 Fkk ≥ 0 is a non negative constant, since F1, F2 are constant on

M2n+s.

Remark 4. A K-manifold is an S-manifold if and only if Ai = −ϕ2. Then, in the hypothesis of the

previous Theorem, we get A2
i = ϕ4 = −ϕ2 = Ai and, comparing with A2

i = −Fiiϕ
2 = FiiAi, we obtain

Fkk = 1, Fhk = 1 and F1 − F2 = s, according to Proposition 7

A K-manifold is a C-manifold if and only if Ai = 0. Then, in the hypothesis of the previous Theorem,

we get A2
i = 0 and comparing with A2

i = −Fiiϕ
2 we obtain Fkk = 0, Fhk = 0 and F1 − F2 = 0,

according to Remark 2

Also K-structures satisfying the conditions dηi = Φ for some indexes i ∈ {1, . . . , s} and dηi = 0 for the

others have been studied in [9]. Such manifolds are subject to a theorem of local decomposition saying

that a K-manifold of dimension 2n+s, s ≥ 2, which admits r closed 1-forms among the ηi’s, 1 ≤ r < s,

whereas the remaining t = s−r coincide with Φ, can be viewed locally as a product of an S-manifold of

dimension 2n + t and a flat manifold of dimension r. Hence, the behavior of the ϕ-sectional curvature

depends on the S-factor.

5 f-manifolds of Kenmotsu type and generalized f.pk-space forms

In [11, 12], we introduced the classes of (almost) Kenmotsu f.pk-manifolds. By definition, a metric

f.pk-manifold M2n+s, s ≥ 1, with f.pk-structure (ϕ, ξi, η
i, g), is said to be an almost Kenmotsu f.pk-

manifold if the 1-forms ηi’s are closed and dΦ = 2η1∧Φ. A Kenmotsu f.pk-manifold is a normal almost

Kenmotsu f.pk-manifold. We recall that M2n+s is a Kenmotsu f.pk-manifold if and only if for any

vector fields X, Y , one has:

(∇Xϕ)Y = g(ϕX, Y )ξ1 − η1(Y )ϕ(X), (23)

Moreover, in a Kenmotsu f.pk-manifold we have

∇ξ1 = −ϕ2 , ∇ξj = 0 , 2 ≤ j ≤ s , (24)

and each ξj , with j 6= 1, is a Killing vector field. The distribution D is integrable and its leaves are

2n-dimensional totally umbilical Kähler manifolds with mean curvature vector field H = −ξ1. The



Generalized globally framed f -space-forms 303

distribution D⊥ =< ξ1, . . . , ξs > is integrable, with totally geodesic flat leaves. When s ≥ 2 we can

consider the distribution D′ = D⊕ < ξ1 >, which is integrable and its leaves are totally geodesic

Kenmotsu manifolds, and the distribution < ξ2, . . . , ξs >, which is integrable with totally geodesic flat

leaves. The existence of the described involutive distributions also allows to state that Kenmotsu f.pk-

manifolds are locally classified as warped products Ms ×f N2n where N2n is a Kähler manifold, Ms is

a flat manifold with coordinates (t1, . . . , ts), and f = c′et1 for some positive constant c′. Furthermore,

if s ≥ 2, they can be viewed, locally, as Riemannian products of a Kenmotsu manifold and an (s − 1)-

dimensional flat manifold. This implies that the behavior of the ϕ-sectional curvature depends on the

Kenmotsu factor, only. Namely, we have (cf. [11])

Theorem 9. A Kenmotsu f.pk-manifold (M2n+s, ϕ, ξi, η
i, g) has p.c. ϕ-sectional curvature c if and

only if, for any vector fields X, Y, Z,

R(X, Y, Z) = c−3
4

(g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X)

+ c+1
4

(2g(X, ϕY )ϕZ + g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX)

−η1(Z)(η1(X)ϕ2Y − η1(Y )ϕ2X)

−(η1(X)g(ϕY, ϕZ) − η1(Y )g(ϕX, ϕZ))ξ1 .

(25)

Theorem 10. Let (M2n+s, ϕ, ξi, η
i, g), n ≥ 2, be a Kenmotsu f.pk-manifold with pointwise constant

ϕ-sectional curvature c.

a) If c is constant, then c = −1 and M2n+s is locally a warped product Ms ×f N2n, Ms and N2n being

both flat manifolds and f a positive function.

b) For any p ∈ M2n+s with c(p) 6= −1 there exists a neighborhood W = Bs × F of p such that

c|W 6= −1 everywhere, g|W = g0 + f2g̃, c + 1 = kf−2, k constant. Moreover (Bs, g0) is flat and

(F, J = ϕ|F , ḡ = g|F ) is a Kähler manifold with constant holomorphic sectional curvature c + 1.

Since (24) is a necessary condition for f.pk-Kenmotsu manifolds, we discuss the influence of such

condition on the underlying f.pk-structure of a generalized f.pk-space-form.

Theorem 11. Let M2n+s(F1, F2,F) be a generalized f.pk-space-form and suppose that ∇ξk = 0 for

k ≥ 2 and ∇ξ1 = −ϕ2. If n ≥ 3 and F2 6= 0 everywhere, then the underlying f.pk-structure is of

Kenmotsu type if and only if Lξk
ϕ = 0, for any k ∈ {1, . . . , s}. Moreover, M2n+s(F1, F2,F) is a

generalized f.pk-space-form with p.c., non constant, ϕ-sectional curvature and it is locally classified as

in b) of Theorem 10.

Proof: By Proposition 9 we know that Fkj = 0 for (k, j) 6= (1, 1), and F11 = −1. Obviously, dηk = 0

for k ≥ 2 and one can easily verify that dη1 = 0, so the distribution D is integrable. Then we can

consider a 2n-dimensional integral submanifold M̄ and using the Gauss equation we get that the second

fundamental form is given by α(X, Y ) = −g(Y,∇Xξ1)ξ1. By (18) and (6) we have

R̄(X, Y, Z) = R(X, Y, Z) − π1(X, Y, Z) = ((F1 + 1)π1 + F2π2)(X, Y, Z) (26)

for X, Y, Z tangent to M̄ . Hence (M̄, J, ḡ), with J = ϕ|M̄ , ḡ = g|M̄ is a 2n-dimensional generalized

complex space-form with functions f1 = F1 + 1, f2 = F2 and p.c. holomorphic sectional curvature

c̄ = 1 + c|M̄ .

From Lemma 1 we get ξk(F1) = ξk(F2) = 0, for k ≥ 2, ξ1(F1) = −2(F1 + 1), ξ1(F2) = −2F2, which

imply ξk(c) = 0 for k ≥ 2, and ξ1(c) = −2(c + 1). Now, assuming F2 6= 0 everywhere, the structure is

subject to condition 1) and 2) of Theorem 3 and in both cases, we have

g((∇Xϕ)Y, Z) = 0, g(N(X, Y ), Z) = 0, X, Y, Z ∈ D.
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By direct computation we have g(N(X, Y ), ξk) = −dηk(ϕX, ϕY ) = 0 and N vanishes on D and the

integral submanifolds are Kähler. Therefore, if n ≥ 3, by the theorem of Tricerri and Vanhecke M̄ is a

Kählerian space-form and F2 must be constant on each M̄ .

Computing (∇Xϕ)Y , we obtain that equation (23) is satisfied with the only possible exception for

X = ξk, k ∈ {1, . . . , s}, and Y ∈ D. Namely, in such a case, we have (∇ξk
ϕ)Y = (Lξk

ϕ)Y and

g(ϕξk, X)ξ1 − η1(X)ϕξk = 0. It follows that the structure is of Kenmotsu type if and only if Lξk
ϕ = 0.

Finally, we apply Theorem 10 and observe that case a) has to be excluded since c = −1 gives F2 = 0.
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