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Abstract

In this note we discuss the problem of existence of para-hyperhermitian structures on

compact complex surfaces. We construct examples of para-hypercomplex structures on

Inoue surfaces of type S− which do not admit compatible metrics.
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1 Introduction

Hypercomplex and hyperkähler structures have been studied for a long time and many interesting

results and relations with other fields have been established. Recently there is a growing interest in

their pseudo-Riemannian counterparts too due to the fact that important geometry models of string

theory carry such structures [15]. The para-hyperhermitian structures arise as a pseudo-Riemannian

analog of the hyperhermitian structures and it is well known [12] that in four dimensions they lead to

self-dual metrics of neutral signature. There are many other similarities between these two structures,

but there are also significant differences. For example, the para-hypercomplex structures, the neutral

analog of hypercomplex structures, exist in any even dimension (not only in that divisible by 4) and,

in contrast to the latter, they may not have compatible metrics.

An almost para-hypercomplex structure is a triple (J1, J2, J3) of anti-commuting endomorphisms

of the tangent bundle with J2
1 = −J2

2 = −J2
3 = −Id. When the structures J1, J2, J3 are integrable it

is called para-hypercomplex. There are two natural classes of metrics compatible with such structures.

The first one consists of the neutral metrics for which the structure J1 is an isometry while J2 and J3

are anti-isometries. These metrics, called para-hyperhermitian in this paper, give rise to three 2-forms

defined in the same way as the Kähler forms in the positive definite case. When they are closed the

structure is called hypersymplectic [9], para-hyperkähler [3], hyper-parakähler [10], neutral hyperkähler

[11], pseudo-hyperkähler [7], etc. The second class consists of positive definite metrics, for which the

structures J1, J2, J3 are isometries. Such metrics always exist and the analog of the Kähler form for
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the structure J2 is a symmetric form which is in fact a neutral metric such that J1 and J3 are anti-

isometries but J2 is an isometry. As pointed out in [1], neutral metrics with this property are interesting

in relation with the doubled geometry models of string theory, introduced by C. Hull [8]. We should

note however that the existence of para-hyperhermitian metrics leads to some additional obstructions

and a purpose of this note is to clarify the problem for their existence.

The paper is organized as follows. After the preliminary definitions (Section 2) we recall in Section

3 Kamada’s classification [11] of compact para- hyperkähler surfaces and relate them to the existence of

parallel null vector fields. Then in Section 4 we establish some necessary conditions for the existence of

a para-hyperhermitian metric with respect to a given para-hypercomplex structure on a 4-manifold and

show that any two such metrics are conformally equivalent. In the last section we show that the Inoue

surfaces of type S+ have para-hyperhermitian structures and provide examples of para-hypercomlex

structures on Inoue surfaces of type S− which do not admit compatible para-hyperhermitian metrics.

2 Preliminaries

A pseudo-Riemannian metric on a smooth 4-manifold M is called neutral if it has signature (+, +,−,−).

Unlike the Riemannian case, there are topological restrictions for existence of a neutral metric on a

compact manifold since it is equivalent to existence of a field of tangent 2-planes [17]. We refer to [13]

for further information in this direction.

An almost para-hypercomplex structure on a smooth 4-manifold M consists of three endomorphisms

J1, J2, J3 of TM satisfying the relations

J2
1 = −J2

2 = −J2
3 = −Id, J1J2 = −J2J1 = J3 (1)

of the imaginary units of the paraquaternionic algebra (split quaternions). A metric g on M is called

compatible with the structure {J1, J2, J3} if

g(J1X, J1Y ) = −g(J2X, J2Y ) = −g(J3X, J3Y ) = g(X, Y ) (2)

(such a metric is necessarily of split signature). In this case we say that {g, J1, J2, J3} is an almost

para-hyperhermitian structure. For any such a structure we define three 2-forms Ωi setting Ωi(X, Y ) =

g(JiX, Y ), i = 1, 2, 3. If the Nijenhuis tensors of J1, J2, J3 vanish, the structure {g, J1, J2, J3} is

called para-hyperhermitian. When additionally the 2-forms Ωi(X, Y ) = g(JiX, Y ) are closed, the para-

hyperhermitian structure is called para-hyperkähler. It is well known [12] that the para-hyperhermitian

metrics are self-dual, whereas the para-hyperkähler metrics are self-dual and Ricci-flat.

It is an observation of Hitchin [9] (see also [11]) that any para-hyperkähler structure is uniquely

determined by three symplectic forms (Ω1, Ω2, Ω3) satisfying the relations

−Ω2
1 = Ω2

2 = Ω2
3, Ωl ∧ Ωm = 0, l 6= m.

A similar characterization holds for para-hyperhermitian structures [10, 11]. They are uniquely

determined by three non-degenerate 2-forms (Ω1, Ω2, Ω3) and a 1-form θ such that

−Ω2
1 = Ω2

2 = Ω2
3, Ωl ∧ Ωm = 0, l 6= m, dΩl = θ ∧ Ωl. (3)

For any para-hyperhermitian structure on a 4-manifold M , the 2-form Ω = Ω2 + iΩ3 is of type

(2, 0) with respect to the complex structure J1, hence the canonical bundle of the complex manifold

(M, J1) is smoothly trivial. Using the well-known classification of compact complex surfaces it follows

that para-hyperhermitian structures can exist only on the following surfaces: complex tori, K3 surfaces,

primary Kodaira surfaces, Hopf surfaces, Inoue surfaces of type SM , S±
N and properly elliptic surfaces

of odd first Betti number. Note that except the K3 surfaces all these surfaces can be represented as

quotients of Lie groups factored by cocompact discrete subgroups (more details will appear in [5]).
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3 Para-hyperkähler surfaces

As is well known (c.f. [2]), any compact hyperkähler surface is either a complex torus with a flat

metric or a K3-surface with Calabi-Yau metric. In the neutral case, the (2, 0)-form Ω = Ω2 + iΩ3

is holomorphic (even parallel), so the canonical bundle is holomorphically trivial. Using this fact

H.Kamada [11] proved the following

Theorem 1. If (M, g, J1, J2, J3) is a compact para-hyperkähler surface, then the complex surface

(M, J1) is biholomorphic to a complex torus or a primary Kodaira surface.

Moreover, Kamada [11, 12] obtained a description of all para-hyperkähler structures on both types

of surfaces.

Theorem 2. For any para-hyperkähler structure on a complex torus M = C
2/Γ there are complex

coordinates (z1, z2) of C
2, such that the structure is defined by means of the following symplectic forms:

Ω1 = Im(dz1 ∧ dz2) + (i/2)∂∂ϕ,

Ω2 = Re(dz1 ∧ dz2), Ω3 = Im(dz1 ∧ dz2),

where ϕ is a smooth function such that

4iIm(dz1 ∧ dz2) ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ. (4)

Conversely, any three forms Ω1, Ω2, Ω3 of the form given above determine a para-hyperkähler structure

on the torus. Moreover, its metric is flat if and only if ϕ is constant.

Let us note that if M is a product of two elliptic curves, then there are non-trivial solutions of the

equation (4) ([12]) and it is not known if such solutions exist when M is not a product.

Before stating Kamada’s result about primary Kodaira surfaces, we recall their definition.

Consider the affine transformations ρi(z1, z2) = (z1+ai, z2+aiz1+bi) of C
2, where ai,bi, i = 1, 2, 3, 4,

are complex numbers such that a1 = a2 = 0, Im(a3a4) = b1. Then ρi generate a group G of affine

transformations acting freely and properly discontinuously on C
2. The quotient space M = C

2/G is

called a primary Kodaira surface.

Theorem 3. For any para-hyperkähler structure on a primary Kodaira surface M there are complex

coordinates (z1, z2) of C
2 such that the structure is defined by means of the following symplectic forms:

Ω1 = Im(dz1 ∧ dz2) + iRe(z1)dz1 ∧ dz1 + (i/2)∂∂ϕ,

Ω2 = Re(eiθdz1 ∧ dz2), Ω3 = Im(eiθdz1 ∧ dz2),

where θ is a real constant and ϕ is a smooth function on M such that

4i(Im(dz1 ∧ dz2) + iRe(z1)(dz1 ∧ dz1)) ∧ ∂∂ϕ = ∂∂ϕ ∧ ∂∂ϕ (5)

Conversely, any three forms Ω1, Ω2, Ω3 of the form given above determine a para-hyperkähler structure

on M . Moreover, its metric is flat if and only if ϕ is constant.

Note that any primary Kodaira surface is a toric bundle over an elliptic curve and the pull-back

of any smooth function on the base curve gives a solution to (5). This shows that the moduli space

of para-hyperkähler structures on a primary Kodaira surface is infinite dimensional, which is in sharp

contrast with the positive definite case.

Non-compact examples of para-hyperkähler mnifolds can be constructed by means of the so-called

Walker manifolds.
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Recall that a Walker manifold is a triple (M, g,D), where M is a smooth manifold, g an indefinite

metric, and D a parallel null distribution. The local structure of such manifolds has been described by

A.Walker [18] and we refer to [6] for a coordinate-free version of his theorem. Of special interest are

the Walker metrics on 4-manifolds for which D is of dimension 2 since they appear in several specific

pseudo-Riemannian structures. For example, the metric of every para-hyperkähler structure is Walker,

D being the (+1)-eigenbundle of either of its product structures.

According to [18], for every Walker 4-manifold (M, g,D) with dimD = 2, there exist local coordi-

nates (x, y, z, t) around any point of M such that the matrix of g has the form

g(x,y,z,t) =

0

B

B

B

@

0 0 1 0

0 0 0 1

1 0 a c

0 1 c b

1

C

C

C

A

(6)

for some smooth functions a, b and c. Then a local orthonormal frame of TM can be defined by

e1 =
1 − a

2
∂x + ∂z, e2 =

1 − b

2
∂y + ∂t − c∂x,

e3 = −
1 + a

2
∂x + ∂z, e4 = −

1 + b

2
∂y + ∂t − c∂x.

Let {J1, J2, J3} be the (local) almost para-hypercomplex structure for which J1e1 = e2, J1e3 = e4,

J2e1 = e3, J2e2 = −e4, J3e1 = e4, J3e2 = e3. This structure is compatible with the Walker metric g,

thus we have an almost para-hyperhermitian structure, called proper in [14].

The next two results have been proved in [4].

Theorem 4. The structure (g, J1, J2, J3) is para-hyperhermitian if and only if the functions a, b and

c have the form

a = x2K + xP + ξ,

b = y2K + yT + η,

c = xyK + 1
2
xT + 1

2
yP + γ,

where the capital and Greek letters stand for arbitrary smooth functions of (z, t).

Theorem 5. The structure (g, J1, J2, J3) is para-hyperkähler if and only if the functions a, b and c do

not depend on x and y.

In particular, the above theorem shows that the neutral Kähler metrics considered by Petean [16]

are all para-hyperkähler and hence self-dual and Ricci-flat.

By the Kamada results mentioned above, any compact para-hyperkähler surface admits two parallel,

null and orthogonal vector fields. Conversely, Theorem 5 together with the Petean’s classification of

neutral Ricci-flat Kähler surfaces ([16]) leads to the following

Theorem 6. Let (M, g) be a compact oriented neutral 4-manifold with two parallel , null and orthogonal

vector fields. Then M admits a para-hyperkähler structure {g, J1, J2, J3}, so (M, J1) is biholomorphic

to a complex torus or a primary Kodaira surface.

A detailed proof of this theorem will appear in [5].
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4 Existence of para-hyperhermitian metrics

In this section we discuss the problem of existence of a metric compatible with a given (almost) para-

hypercomplex structure.

A (linear) para-hypercomplex structure on a vector space V is a triple {J1, J2, J3} of endomorphisms

of V satisfying the relations (1). Note that such structures exist on any even-dimensional vector space.

A metric g on V is called compatible with the structure {J1, J2, J3} if the identities (2) are satisfied.

In this case we say that {g, J1, J2, J3} is a (linear) para- hyperhermitian structure on V .

If we are given a hypercomplex structure {J1, J2, J3} and g is any positive definite metric on V , then

h(X, Y ) = g(X, Y )+ g(J1X, J1Y )+ g(J2X, J2Y )+ g(J3X, J3Y ) is a positive definite metric compatible

with {J1, J2, J3}. In the case of a para-hypercomplex structure, some authors suggest, by an analogy,

to consider the bilinear form h(X, Y ) = g(X, Y ) + g(J1X, J1Y ) − g(J2X, J2Y ) − g(J3X, J3Y ) where g

is a metric. This symmetric form is compatible with the given para-hypercomplex structure but it may

be degenerate.

Example. Let e1, e2, e3, e4 be the standard bases of R
4 and let {J1, J2, J3} be the para-hypercomplex

structure on R
4 for which J1e1 = e2, J1e3 = e4, J2e1 = e3, J2e2 = −e4, J3e1 = e4, J3e2 = e3. If g

is the standard metric on R
4, then the endomorphisms J1, J2, J3 are isometries of g, hence the form

h(X, Y ) = g(X, Y )+ g(J1X, J1Y )− g(J2X, J2Y )− g(J3X, J3Y ) is identically zero. Similarly, if g is the

metric for which e1, ..., e4 is an orthogonal basis with g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = g(e4, e4) = −1

(in this case J1 and J3 are anti-isometrices, while J2 is an isometry).

The next observation is implicitly contained in [12].

Lemma 7. Let {J1, J2, J3} be a para-hypercomplex structure on a vector space V . Let V ± be the

±1-eigenspace of the endomorphism J2. Then there is a bijective correspondence between the set of

non-degenerate skew-symmetric 2-forms on the space V ± and the set of metrics on V compatible with

the given para-hypercomplex structure.

Proof: Let h be a non-degenerate skew-symmetric 2-form on V +. Extend this form to a form on

the whole space V setting h(V, V −) = h(V −, V ) = 0. Now set g(X, Y ) = h(X, J1Y ) + h(Y, J1X) for

X, Y ∈ V . Then g is a symmetric bilinear form on V and g(J1X, J1Y ) = g(X, Y ). Note that the

spaces V ± are g-isotropic since J1 interchanges V + and V −. Let X = X+ +X−, Y = Y + +Y − be the

V ±-decomposition of arbitrary vectors X, Y ∈ V . Then g(J2X, J2Y ) = h(J2X, J3Y ) + h(J2Y, J3X) =

h(X+, J3Y
−) + h(Y +, J3X

−) since J3 interchanges V + and V −. On the other hand, g(X, Y ) =

h(X+, J1Y
−)+h(Y +, J1X

−) = −h(X+, J1J2Y
−)−h(Y +, J1J2X

−) = −h(X+, J3Y
−)−h(Y +, J3X

−).

Thus g(J2X, J2Y ) = −g(X, Y ). It follows that g(J3X, J3Y ) = −g(X, Y ) since J3 = J1J2. Finally, the

identity g(X, Y ) = h(X+, J1Y
−) + h(Y +, J1X

−) and the fact that h is non-degenerate on V + imply

that g is non-degenerate.

Conversely, let g be a metric on V compatible with the para-hypercomplex structure {J1, J2, J3}.

Then the spaces V ± are g-isotropic. It follows that h(A, B) = 1
2
g(J1A, B), A, B ∈ V +, is a non-

degenerate skew-symmetric 2-form. It is easy to check that h yields the metric g.

The proof above gives also the following

Proposition 8. Let {J1, J2, J3} be an almost para-hypercomplex structure on a four-manifold M . Let

V ± be the subbundle of TM corresponding to the eigenvalue ±1 of J2. The manifold M admits a metric

g compatible with the given para-hypercomplex structure if and only if the bundle V ± is orientable.

The bundle V ± is orientable iff the linear bundle Λ2V ± is trivial. It follows that if H1(M, C∗) = 0

where C∗ is the sheaf of non-vanishing smooth real-valued function on M , then V ± is orientable, hence

{J1, J2, J3} admits a compatible metric.
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It is well-known that for every vector bundle there is a double cover of its base such that the

pull-back bundle is orientable. Therefore we have the following

Corollary 9. For any almost para-hypercomplex structure on a four-manifold M there is a double

cover of M such that the pull-back para-hypercomplex structure on it admits a compatible metric.

Proposition 8 and the fact that any bundle on a simply connected manifold is orientable imply

Corollary 10. Any almost para-hypercomplex structure on a simply connected four-manifold M admits

a compatible metric.

We should emphasize that, in contrast to the definite case, not every para-hypercomplex structure

admits a compatible metric. Examples of such structures on Inoue surfaces of type S− will be provided

in the last section. Other examples can be constructed on hyperelliptic surfaces [5].

The next fact is well-known [3] and easy to prove.

Lemma 11. Let {g, J1, J2, J3} be a para-hyperhermitian structure on a vector space V . A vector w ∈ V

is g-non-isotropic if and only if w, J1w, J2w, J3w is a basis of V .

Proof: The vectors w, J1w, J2w, J3w are g-orthogonal. Thus, if w is non-isotropic, they form a basis.

Conversely, suppose that w, J1w, J2w, J3w is a bases. Take a vector e1 ∈ V with ||e1||g = 1. Then

e1, e2 = J1e1, e3 = J2e1, e4 = J3e1 is a g-orthonormal basis of V . Let (w1, w2, w3, w4) be the coordinates

of w with respect to this basis. Then the coordinates of J1w, J2w, J3w are J1w = (−w2, w1,−w4, w3),

J2w = (w3,−w4, w1,−w3), J3w = (w4, w3, w2, w1). It follows that the transition matrix from the bases

(w, J1w, J2w, J3w) to the bases (e1, e2, e3, e4) has determinant equal to (w2
1 + w2

2 −w2
3 −w2

4)
2 = ||w||4g.

Hence w is non-isotropic.

This observation implies that any metric compatible with a para-hyper-complex structure is of split

signature.

Lemma 12. Let {J1, J2, J3} be a para-hypercomplex structure on a vector space V . Let g and h be

two compatible metrics. If w is an h-non-isotropic vector, then it is also g-non-isotropic and g = λ h,

where λ = g(w, w)/h(w, w).

Proof: It is clear that the identity g(X, Y ) = g(w, w)/h(w, w) h(X, Y ) holds when X = Y = w, J1w,

J2w, J3w. Hence it holds for every X, Y ∈ V since w, J1w, J2w, J3w is a basis which is g- and h-

orthogonal. In particular, g(w, w) 6= 0.

Proposition 13. If {J1, J2, J3} is an almost para-hypercomplex structure on a four-manifold M and

g,h are two compatible metrics, then there exists a unique non-vanishing smooth function f on M such

that g = f h.

Proof: Every point of M has a neighbourhood with an h-non-isotropic vector field W on it and the

proposition follows form Lemma 12

Corrolary 9 and Proposition 13 imply the following

Proposition 14. Every para-hypercomplex structure on a 4-manifold M determines a conformal class

up to a double cover of M .
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5 Inoue surfaces of type S±

It is well-known [3, 10] that the Inoue surfaces of type S+ admit para-hyperhermitian structures. In

this section, we show that, in contrast, any Inoue surface of type S− has a para-hypercomplex structure

which does not admit a compatible metric. Before that we recall the definition of the Inoue surfaces of

type S±.

Let p, q, r be integers, t a complex number, and N ∈ SL(2, Z) a matrix with eigenvalue α > 1 and

1/α. Denote by H the upper half-plane of the complex plane C. The Inoue surface S+
p,q,r,t,N is obtained

as a quotient of H × C by the action of the group generated by following transformations:

φ0(z, w) → (αz, w + t)

φi(z, w) → (z + ai, w + biz + ci) , i = 1, 2

φ3(z, w) → (z, w + A),

where (a1, a2) and (b1, b2) are real eigenvectors of N corresponding to α and 1/α, and A = (b1a2 −

b2a1)/r. Here, the constants ci are real numbers determined by ai, bi, p, q, r, and the eigenvalues of N .

The (1,0)-forms

θ1 =
dz

Im z
and θ2 = dw −

Im w − s ln(Im z)

Im z
dz

where s = Im t/ ln α are invariant under this action and the corresponding dual (1,0)-vector fields are:

E1 = (Im z)
∂

∂z
+ (Im w − s ln(Im z))

∂

∂w
and E2 =

∂

∂w
.

It is easy to see that

dθ1 = (−1/2i)θ1 ∧ θ1, dθ2 = (1/2i)(θ1 ∧ θ2 − θ1 ∧ θ2 + sθ1 ∧ θ1).

From here one gets

d(θ1 ∧ θ2) = −(Im θ1) ∧ θ1 ∧ θ2,

thus the (2, 0)-form Ω = θ1 ∧ θ2 satisfies the relation dΩ = −Im θ1 ∧ Ω.

Set Ω1 = Re(θ1 ∧ θ2). Then one can check that

dΩ1 = −Im θ1 ∧ Ω1, Ω2
1 = −(Re Ω)2 = −(Im Ω)2 =

1

2
θ1 ∧ θ1 ∧ θ2 ∧ θ2.

Therefore the triple (Ω1, Re Ω, Im Ω) defines a para-hyperhermitian structure on S+
p,q,r,t,N .

The definition of Inoue surfaces of type S− is the same as those of type S+, but in this case φ0

is defined as φ0(z, w) → (αz,−w). It is clear that any surface S− is a quotient of a certain surface

S+ with t = 0 by the action of the involution σ : S+ → S+ given by σ(z, w) = (z,−w). Then for

the (1, 0)-forms θ1 and θ2 defined above, we have σ∗θ1 = θ1, σ∗θ2 = −θ2. Therefore σ∗Ω1 = −Ω1

and σ∗Ω = −Ω, hence the para-hyperhermitian structure on S+ defined above does not descend to

S−. Nevertheless, we show below that the surface S− admits a para- hypercomplex structure with

no compatible metric. Notice first that the para-hypercomplex structure on S+ defined by the para-

hyperhermitian structure (Ω1, Re Ω, Im Ω) does descend to S−. Indeed, the map σ is an anti-isometry

with respect to the metric of this structure since it preserves the complex structure and σ∗(Ω1) = −Ω1.

This, the identity σ∗Ω = −Ω and the fact that σ is an involution imply that σ preserves also the two

product structures. Hence the para-hypercomplex structure descends to S−. On the other hand, if we

suppose that there is a metric on S− compatible with the induced para- hypercomplex structure, its

pull-back would be a metric compatible with the para- hypercomplex structure on S+. But, according

to Proposition 13, in real dimension 4, any two metrics compatible with the same para-hypercomplex

structure are conformally equivalent. So there would be a nowhere vanishing real-valued function f on

S+ for which fΩ is the pull-back of the (2, 0) - form on S− associated with the para-hyperhermitian
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structure there. Since fΩ is σ-invariant and σ∗(Ω) = −Ω, we have f(σ(x)) = −f(x) for every x ∈ S+.

But this contradicts to the fact that f has a fixed sign. So the para-hypercomplex structure on S−

defined above does not admit a compatible metric.
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