Bull. Math. Soc. Sci. Math. Roumanie Tome 52(100) No. 3, 2009, 307–309

Minimizers of a generalized Yang-Mills functional

by

CĂTĂLIN GHERGHE To Professor S. Ianuş on the occasion of his 70th Birthday

Abstract

We prove that any absolute minimum of the Yang-Mills functional in a certain space of connections is also a minimizer of the generalized gauge invariant functional defined in [2].

Key Words: Curvature, vector bundle, Yang-Mills connections, convex functions.
2000 Mathematics Subject Classification: Primary 58E15, Secondary 81T13, 53C07.

Let E be a vector bundle with structure group G over a compact Riemannian manifold (M, g). We assume that $G \subset O(m)$ is a compact Lie group and that E carries an inner product compatible with G. A connection ∇ on the vector bundle E is called a G-connection if the natural extension of ∇ to tensor bundles of E annihilates the tensors which define the G-structure. We denote by $\mathcal{C}(E)$ the space of all smooth G-connections ∇ on E.

To each connection $\nabla \in \mathcal{C}(E)$ a curvature 2-form R^{∇} is associated, and at each point $x \in M$ we can take its norm

$$||R^{\nabla}||_{x}^{2} = \sum_{i < j} ||R^{\nabla}_{e_{i},e_{j}}||_{x}^{2}.$$

where $\{e_i\}_{i=1}^n$ is an orthonormal basis of $T_x M$ and the norm of R_{e_i,e_j}^{∇} is the usual one, namely $\langle A, B \rangle = \operatorname{tr}(A^t \circ B)$. For more detailes see [1].

Definition 1. For any function $f : [0, \infty) \to [0, \infty)$ of class C^2 , such that f'(t) > 0 for any $t \ge 0$, a generalized Yang-Mills functional is the mapping $YM_f : \mathcal{C}(E) \to \mathbb{R}$ given by (see [2])

$$YM_f(\nabla) = \int_M f(\frac{1}{2} \|R^{\nabla}\|^2) \vartheta_g.$$

We note that if f(t) = t the functional above is the clasical Yang-Mills functional and if $f(t) = \exp(t)$ the functional is the exponential Yang-Mills (see [3]). A critical point of YM_f will be called an f-Yang-Mills connection.

In [2] the following result is proven:

Theorem 1. Let (M, g) be an n-dimensional compact Riemannian manifold, G a compact Lie group, and E a smooth G-vector bundle over M. Assume that $n \ge 5$ and $f''(0) \ne 0$ and let ∇ be a Yang-Mills connection. Then there exists a Riemannian metric \tilde{g} on M conformally equivalent to g such that ∇ is a critical point of the functional YM_f.

Cătălin Gherghe

Now we look for minimizers of the functional YM_f .

A function $f : \mathbb{R}^p \to \mathbb{R}$ is called convex if for all $x, y \in \mathbb{R}^p$ and $0 \le \lambda \le 1$,

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$$

The following Jensen's inequality is wellknown:

Proposition 1. Let f be a convex function on \mathbb{R}^p , S a set with $\mu(S) < \infty$, μ a non-negative bounded measure on S and $\mathcal{L}^1(S,\mu)$ the space of all integral measurable functions on S with respect to μ . Then for any $\xi_i \in \mathcal{L}^1(S,\mu)$, $1 \le i \le p$,

$$f(\zeta^1,\ldots,\zeta^p) \leq \frac{1}{\mu(S)} \int_S f(\xi_1(x),\ldots,\xi_p(x)) d\mu,$$

where

$$\zeta^i := \frac{1}{\mu(S)} \int_S \xi_i(x) d\mu.$$

The equality holds if and only if ξ_i is constant almost everywhere.

If we fix a G-connection ∇^0 of E, we define for any $1 the Sobolev space of <math>\mathcal{L}_1^p$ G-connections by

$$\mathcal{L}_1^p(E) = \{ \nabla = \nabla^0 + A | A \in \mathcal{L}_1^p(T^*M \otimes g_E) \},\$$

where $\mathcal{L}_1^p(T^{\star}M \otimes g_E)$ is the completion of $\Omega^1(g_E)$ with respect to the norm

$$\|A\|_{1,p} = \left(\int_{M} \|\nabla A\|^{p} \vartheta_{g}\right)^{1/p} + \left(\int_{M} \|A\|^{p} \vartheta_{g}\right)^{1/p}.$$

Define also the \mathcal{L}^p space of *G*-connections of *E* by

$$\mathcal{L}^{p}(E) = \{ \nabla = \nabla^{0} + A | A \in \mathcal{L}^{p}(T^{\star}M \otimes g_{E}) \},\$$

where $\mathcal{L}^p(T^*M \otimes g_E)$ is the completion of $\Omega^1(g_E)$ with respect to the norm

$$||A||_p = \left(\int_M ||A||^p \vartheta_g\right)^{1/p}.$$

Finally we define the space

$$\mathcal{W}(E) = \bigcap_{p \ge 1} \mathcal{L}_1^p(E) \cap \{\nabla | YM_f(\nabla) < \infty\}.$$

Theorem 2. Let ∇^0 be a minimizer in $\mathcal{W}(E)$ of the Yang-Mills functional YM such that the norm of the curvature $\|R^{\nabla^0}\|$ is almost everywhere constant. If we suppose that the function f is convex, then ∇^0 is also a minimizer of the functional YM_f and for any minimizer ∇' of the functional YM_f in $\mathcal{W}(E)$, the norm $\|R^{\nabla'}\|$ is almost everywhere constant.

Proof: First we notice that for any $\nabla \in \mathcal{W}(E)$ we have

$$f\left(\frac{1}{\operatorname{vol}(M,g)}YM(\nabla)\right) \leq \frac{1}{\operatorname{vol}(M,g)}YM_f(\nabla),$$

and the equality holds if and only if $||R^{\nabla}||$ is almost everywhere constant. Indeed as the connection ∇ satisfies $YM_f(\nabla) < \infty$ then $\frac{1}{2}||R^{\nabla}||$ belongs to the space $\mathcal{L}^p(M)$ of all integrable functions on M

308

Minimizers of a generalized Yang-Mills functional

with respect to the canonical volume element ϑ_g . Since the function f is convex we can use Jensen's inequality.

Now for any $\nabla' \in \mathcal{W}(E)$, from the monotonicity of the function f and using the previous remark we get

$$f\left(\frac{1}{\operatorname{vol}(M,g)}YM(\nabla^0)\right) \le f\left(\frac{1}{\operatorname{vol}(M,g)}YM(\nabla')\right) \le \frac{1}{\operatorname{vol}(M,g)}YM_f(\nabla').$$
(1)

Then we obtain

$$f\left(\frac{1}{\operatorname{vol}(M,g)}YM(\nabla^0)\right) \le \inf_{\nabla' \in \mathcal{W}(E)} \frac{1}{\operatorname{vol}(M,g)}YM_f(\nabla').$$

On the other hand, since $||R^{\nabla^0}||$ is almost everywhere constant, we obtain:

$$\frac{1}{\operatorname{vol}(M,g)} Y M_f(\nabla^0) = \frac{1}{\operatorname{vol}(M,g)} \int_M f(\frac{1}{2} \|R^{\nabla^0}\|^2) \vartheta_g =$$
$$= f(\frac{1}{2} \|R^{\nabla^0}\|^2) = f\left(\frac{1}{\operatorname{vol}(M,g)} Y M(\nabla^0)\right),$$

and thus ∇^0 is also a minimizer of the functional YM_f .

On the other hand if we assume that ∇' is any minimizer of the functional YM_f then the second inequality of (1) is in fact equality and thus $\frac{1}{2} \|R^{\nabla'}\|$ is constant almost everywhere.

References

- J.P.BOURGUIGNON, H.B.LAWSON, Stability and isolation phenomena for Yang-Mills fields, Commun.Math.Phys. 79(1981) 189-230.
- [2] C.GHERGHE, On a gauge invariant functional, Proceedings of Edinburgh Mathematical Society (2009), 52, 1-9.
- [3] F. MATSUURA, H.URAKAWA, On exponential Yang-Mills connections, J.Geom.Phys., 17(1995), 73-89.

Received: 10.03.2009.

University of Bucharest Faculty of Mathematics 14 Academiei str. 70109 Bucharest, Romania E-mail: gherghe@gta.math.unibuc.ro