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Abstract

We survey results on holomorphic functions (of one complex variable) with values in a

complex topological vector space hinting to their extension to the case of several complex

variables. We give a version of the Hartogs theorem on separate analyticity for weakly holo-

morphic functions with values in a complex Fréchet space. The theory of α-differentiable

functions (due to N. Teodorescu, [27], and extended by F-H. Vasilescu, [28], to functions

with values in a Fréchet space) is briefly reviewed as related to areolar derivatives. We

present a selection of results on holomorphic functions with values in a complex Banach

space with an emphasis on the boundary behavior of vector-valued holomorphic functions.

We announce an extension of work by M.S. Baouendi & F. Treves, [3] (on the approxima-

tion of CR functions by holomorphic functions) to the case of CR functions with values in

a complex Fréchet space.
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1 Introduction

The main purpose of the present paper is to survey some of the known results on holomorphic functions

f : Ω → X where Ω ⊂ C
n is an open set (n ≥ 1) and X a complex topological vector space. Vector-

valued holomorphic functions are useful in the theory of 1-parameter semigroups (cf. e.g. W. Arendt et

al., [2]) and in analytic functional calculus (cf. e.g. F-H. Vasilescu, [29]). Except for the treatment in

[29] (dealing with holomorphic functions of several complex variables, with values in a complex Fréchet

space, as related to the functional calculus associated to a system of several commuting operators, cf.

J.L. Taylor, [25]-[26]) the body of the present day literature is confined to functions of one complex

variable mostly with values in a complex Banach space. In the spirit of functional analysis there are

essentially two approaches to analyticity of vector-valued functions, through the notions of a weakly

holomorphic and a (strongly) holomorphic function f : Ω → X (cf. Section 2 for definitions) the

first of the two being easier to check in practical examples. Holomorphic functions are always weakly

holomorphic. It is then an important question (addressed by K.G. Grosse-Erdmann, [9]-[10], and W.

Arendt & N. Nikolski, [1]) to determine the minimal assumptions under which a weakly holomorphic
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function is strongly holomorphic as well. Let Ω ⊂ C be an open set, X a complex Banach space, and

W ⊂ X∗ a subset. Let σ(X, W ) be the W -topology of X (the weak topology on X induced by W ,

cf. e.g. [21], p. 62). By a result in [1] a σ(X, W )-holomorphic function f : Ω → X is holomorphic

if and only if each σ(X, W )-bounded set in X is bounded. If f : Ω → X is additionally assumed to

be locally bounded then the mere knowledge that Λ ◦ f ∈ O(Ω) for any Λ ∈ W and some separating

subspace W ⊂ X∗ implies that f : Ω → X is holomorphic (cf. Theorem 15 below). A generalization of

this result (to the case where X is a locally convex space assumed to be locally complete, cf. [22]) was

obtained by F.G. Grosse-Erdmann, [10] (cf. Theorem 16 below).

The exposition is organized as follows. In Section 2 we review the result that weakly holomorphic

functions (of one complex variable) with values in a locally convex space X are (strongly) continuous and

discuss the extension of the result to the case of functions of several complex variables (cf. Theorem 2).

If additionally X is a complex Fréchet space then each weakly holomorphic function f : Ω ⊂ C
n → X

(n ≥ 1) may be shown to be holomorphic (cf. Theorem 4). This is a classical result by A. Grothendieck,

[11]. Sections 3 to 5 describe a selection of results in the theory of holomorphic functions with values

in a complex Fréchet or Banach space and report on results by W. Arendt & N. Nikolski, [1], F.G.

Grosse-Erdmann, [10], F-H. Vasilescu, [28], and P. Vieten, [30]. Section 6 discusses the extension (to

the case of vector-valued CR functions) of a result by M.S. Baouendi & F. Treves, [3], on uniform

approximation of CR functions with holomorphic functions. Theorem 19 in Section 6 is new.

While writing the present survey the Authors kept in mind three possible developments of the

theory that is i) recovering results in complex analysis in several complex variables, ii) allowing for

more general complex topological vector spaces X as target spaces (e.g. Fréchet spaces instead of

Banach spaces), and iii) building a theory of vector-valued CR functions (an open problem so far).

2 Holomorphic functions

Let Ω ⊂ C
n be an open subset (n ≥ 1) and X a complex topological vector space. A function f : Ω → X

is weakly holomorphic in Ω if Λ◦f ∈ O(Ω) i.e. Λ◦f : Ω → C is a holomorphic function for any Λ ∈ X∗.

Also f : Ω → X is (strongly) holomorphic if for any a ∈ Ω there is a neighborhood a ∈ U ⊂ Ω and a

series
P

|α|≥0(z − a)αxα with xα ∈ X such that
P∞

|α|=0(z − a)αxα = f(z) for any z ∈ U .

As each Λ ∈ X∗ is continuous, strongly holomorphic functions are weakly holomorphic as well. As

to the converse one may state (cf. Theorem 3.31 in [21], p. 82)

Theorem 1. Let X be a locally convex space. Let Ω ⊂ C be an open set. Let f : Ω → X be a weakly

holomorphic function. Then

i) f is strongly continuous in Ω.

Let us additionally assume that the closed convex hull of f(Γ) is a compact subset of X for any Γ ∈ Γ(Ω).

Then

ii) If Γ ∈ Γ(Ω) is a curve such that IndΓ(z) = 0 for any z ∈ C \ Ω then

Z

Γ

f(ζ) dζ = 0, (2.1)

f(z) =
1

2πi

Z

Γ

(ζ − z)−1f(ζ) dζ, z ∈ Ω, IndΓ(z) = 1. (2.2)

Moreover
Z

Γ1

f(ζ) dζ =

Z

Γ2

f(ζ) dζ, (2.3)

for any Γ1, Γ2 ∈ Γ(Ω) such that IndΓ1
(z) = IndΓ2

(z) for each z ∈ C \ Ω. Let us additionally assume

that X is a complex Fréchet space. Then
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iii) f is C-differentiable at each z0 ∈ Ω that is the limit

lim
z→z0

(z − z0)
−1 [f(z) − f(z0)]

exists in the topology of X for any z0 ∈ Ω.

Here Γ(Ω) denotes the set of all closed rectifiable curves Γ = {γ(t) : a ≤ t ≤ b} in Ω ⊂ C and

IndΓ(z) =
1

2πi

Z

Γ

dζ

ζ − z
, Γ ∈ Γ(Ω), z ∈ C.

Formulae (2.1)-(2.2) are respectively Cauchy’s theorem and Cauchy’s formula for X-valued weakly

holomorphic functions (cf. e.g. Theorem 1.5 and formula (1.59) in [24], p. 42-49, for the scalar

valued counterpart). The proof of strong continuity of weakly holomorphic functions relies essentially

on Cauchy’s formula for ordinary (scalar valued) holomorphic functions (cf. [21], p. 83-84). The

assumption that X is a locally convex space is exploited in two ways. First in a locally convex space

weakly bounded subsets are (strongly) bounded (cf. Theorem 3.18 in [21], p. 70). Second for any

locally convex space X the dual X∗ separates points (cf. Corollary to Theorem 3.4 in [21], p. 59-60).

When n ≥ 2 Cauchy’s formula (for holomorphic functions of one complex variable) plays a similar

role. Indeed let Ω ⊂ C
n be an open set (n ≥ 2) and let a ∈ Ω. Let ρ = (ρ1, · · · , ρn) be a polyradius

(ρj > 0) such that the polydisc P (a, 2ρ) = {z ∈ C
n : |zj − aj | ≤ 2ρj , 1 ≤ j ≤ n} is contained in Ω.

Let f : Ω → X be a weakly holomorphic function and Λ ∈ X∗. Let us set a(j) = (a1, · · · , aj) ∈ C
j for

1 ≤ j ≤ n. As Λ◦f : Ω → C is holomorphic for each z ∈ P (a, 2ρ) (by applying twice Cauchy’s formula)

Λ[f(z)] − Λ[f(a)] =

=
1

2πi

n
X

j=1

(zj − aj)

Z

|ζj−aj |=2ρj

Λ
h

f
“

a(j−1), ζj , zj+1, · · · , zn

”i

(ζj − zj)(ζj − aj)
dζj .

Let M(Λ) = sup
˘

|Λ[f(ζ)]| : ζ ∈ P (a, 2ρ)
¯

. If z ∈ P (a, ρ) \ {a} then

|Λ[f(z)] − Λ[f(a)]| ≤ M(Λ) |z − a|
n

X

j=1

1

ρj
.

Consequently the set
˘

|z − a|−1 [f(z) − f(a)] : z ∈ P (a, ρ) \ {a}
¯

(2.4)

is weakly bounded in X hence strongly bounded, as well. Let V ⊂ X be an open neighborhood of the

origin 0 ∈ X. As (2.4) is bounded there is s > 0 such that

f (z) − f(a) ∈ t|z − a|V, z ∈ P (a, ρ) \ {a}, t ≥ s .

As every topological vector space has a balanced local base of neighborhoods of the origin (cf. e.g. [21],

p. 13) it follows that f is (strongly) continuous in a. We have shown that

Theorem 2. Let X be a locally convex space and Ω ⊂ C
n an open set (n ≥ 2). Any weakly holomorphic

holomorphic function f : Ω → X is strongly continuous.

Once the continuity of weakly holomorphic functions f : Ω → X is proved one may use Theorem

3.27 in [21], p. 78, to conclude that under the assumptions of Theorem 1 above the integrals
R

Γ
f(ζ) dζ

and
R

Γ
(ζ−z)−1f(ζ) dζ are well defined elements of X (as Bochner integrals i.e. in the sense of Definition

3.26 in [21], p. 77). Then (2.1)-(2.3) hold by the classical Cauchy’s formula and Cauchy’s theorems

applied to the holomorphic function Λ ◦ f for any Λ ∈ X. Similarly for functions of n ≥ 2 complex

variables one has
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Theorem 3. Let X be a locally convex space and Ω ⊂ C
n an open set (n ≥ 2). Let a ∈ Ω and

ρ = (ρ1, · · · , ρn) a polyradius such that P (a, ρ) ⊂ Ω. Let f : Ω → X be a weakly holomorphic function

such that the closed convex hull of f [∂0P (a, ρ)] is a compact subset of X. Then for each z ∈ P (a, ρ)

f(z) =
1

(2πi)n

Z

∂0P (a,ρ)

f(ζ1, · · · , ζn)
n

Y

j=1

(ζj − zj)
−1 dζ1 · · · dζn . (2.5)

Here ∂0P (a, ρ) =
Qn

j=1 S1(aj , ρj) is the essential boundary of P (a, ρ) and S1(z0, r) = {z ∈ C : |z−z0| =

r} with z0 ∈ C and r > 0.

Part (iii) in Theorem 1 is stated under the assumption that X is a Fréchet space. This guarantees

that co[F (Γ)] is a compact set, where F (z) = z−2f(z), z ∈ Γ = {ζ ∈ C : |ζ| = 2r}, hence both Cauchy’s

theorem (2.1) and Cauchy’s integral formula (2.2) hold for the holomorphic function F (and the proof

in [21], p. 84, applies).

Let X be a complex Fréchet space and f : Ω → X a weakly holomorphic function. For a ∈ C
n we

set

Ωj,a = {z ∈ C : (a1, · · · , aj−1, z, aj+1, · · · , an) ∈ Ω}

and fj,a(z) = f(a1, · · · , aj−1, z, aj+1, · · · , an) for any z ∈ Ωj,a. Each fa,j is weakly holomorphic in Ωj,a

hence (by Theorem 1) strongly holomorphic in Ωj,a. Is then f : Ω → X holomorphic? Equivalently

does Hartogs’ theorem hold for X-valued functions possessing this property (cf. [17], p. 43, for X = C)?

We may state

Theorem 4. Let X be a complex Fréchet space, Ω ⊂ C
n an open set (n ≥ 1), and f : Ω → X a weakly

holomophic function. Then f is strongly holomorphic.

To establish Theorem 4 one follows the arguments in the proof of the classical Hartogs’ theorem

(cf. e.g. [17], p. 43-44). The proof is considerably easier because weakly holomorphic functions are

readily continuous (while Hartogs’ theorem assumes but separate analyticity to start with). It actually

suffices to show

Theorem 5. Let X be a complex Fréchet space. Let Ω be the polydisc {z ∈ C
n : |zj | < R, 1 ≤ j ≤ n}

with R > 0. Let f : Ω → X be a weakly holomorphic function. Then there is 0 < r < R and a power

series
P

|α|≥0 zαxα with xα ∈ X converging uniformly on P (0, r) such that f(z) =
P∞

|α|=0 zαxα for

any z ∈ P (0, r) (here r = (r, · · · , r)).

Proof: Let Dr(0) = {z ∈ C : |z| < r}. As f : Ω → X is continuous (cf. Theorem 2) it is Bochner

integrable on the product of the circles Tρ =
Qn

j=1{ζj ∈ C : |ζj | = ρ}, 0 < ρ < R, i.e. f ∈ L1(Tρ, X, dζ).

Let z′ = (z1, · · · , zn−1) such that |zj | < R for any 1 ≤ j ≤ n − 1 and note that Dρ(0) ⊂ Ωn,z′ . As

argued above fn,z′ is holomorphic in Ωn,z′ and in particular in Dρ(0) hence (by Theorem 1) for |zn| < ρ

f(z′, zn) =
1

2πi

Z

|ζn|=ρ

(ζn − zn)−1f(z′, ζn) dζn.

For fixed z1, · · · , zn−2 with |zj | < R, 1 ≤ j ≤ n−2, and fixed ζn ∈ Dρ(0) the function f(z1, · · · , zn−1, ζn)

is holomorphic in the disc |zn−1| < ρ hence we may repeat the procedure above. In the end for any

|zj | < ρ, 1 ≤ j ≤ n, one has

(2πi)n f(z1, · · · , zn) = (2.6)

=

Z

|ζn|=ρ

dζn

Z

|ζn−1|=ρ

dζn−1 · · ·

Z

|ζ1|=ρ

n
Y

j=1

(ζj − zj)
−1f(ζ1, · · · , ζn) dζ1.

Let P (0, r) = {z ∈ C
n : |zj | ≤ r} where r = (r, · · · , r) and 0 < r < ρ. Let z ∈ P (0, r) and ζ ∈ Tρ.

Then
Qn

j=1 (ζj − zj)
−1 =

P∞
|α|=0 zα/ζα+1 where α + 1 = (α1 + 1, · · · , αn + 1) and the series converges

uniformly for ζ ∈ Tρ and z ∈ P (0, r). Let fα(z, ζ) =
`

zα/ζα+1
´

f(ζ). Then



Vector valued holomorphic functions 215

Lemma 1. For any z ∈ P (0, r) the series
P

|α|≥0 fα(z, ζ) is convergent in the topology of X uniformly

with respect to ζ ∈ Tρ.

By Lemma 1 we may integrate
P

|α|≥0 fα(z, ζ) term-by-term (with respect to ζ ∈ Tρ) and obtain

(by (2.6))

f(z) =
∞

X

|α|=0

zαxα , z ∈ P (0, r), 0 < r ≤ ρ,

xα =
1

(2πi)n

Z

|ζn|=ρ

dζn

Z

|ζn−1|=ρ

dζn−1 · · ·

Z

|ζ1|=ρ

`

1/ζα+1
´

f(ζ) dζ1 ∈ X.

Finally Theorem 5 follows from

Lemma 2. The series
P

|α|≥0 zαxα converges in X uniformly for z ∈ P (0, r).

Theorem 4 goes back to A. Grothendieck, [11]. The following Liouville type theorem holds (the

proof is independent of Theorem 1).

Theorem 6. Let X be a complex topological vector space such that X∗ separates points. If f : C → X

is weakly holomorphic and f(C) is a weakly bounded subset of X then f is constant.

3 α-Differentiability versus areolar derivatives

The scope of this section is to discuss α-differentiability of functions f : Ω ⊂ C → X with values in a

Fréchet space (cf. F-H. Vasilescu, [28]) as related to areolar derivatives (cf. D. Pompeiu, [19]-[20], N.

Teodorescu, [27]). Let α : [0, 2π] × [0, +∞) → C be a continuous function such that

lim
r→0

1

2πr

Z 2π

0

α(θ, r)d θ = 0 (3.1)

Let z0 ∈ C and Ω ⊂ C an open neighborhood of z0. Let X be a complex topological vector space

such that X∗ separates points and let f : Ω → X be a continuous function. For r > 0 we consider the

function Fr : [0, 2π] → X given by Fr(θ) = α(θ, r)f(z0 + reiθ) for any 0 ≤ θ ≤ 2π. If i) there is r0 > 0

such that co [Fr([0, 2π])] is a compact subset of X for any 0 < r ≤ r0 and ii) the limit

lim
r→0

1

2πr

Z 2π

0

α(θ, r)f(z0 + reiθ) dθ (3.2)

exists in the topology of X then f is said to be α-differentiable in z0 and the limit (3.2) is denoted by

(∂αf)(z0).

Let α : [0, 2π]× [0, +∞) → C be a continuous function with the property (3.1). Let X be a Fréchet

space. Let Ω ⊂ C be an open set and f ∈ C∞(Ω, X). Then

(∂αf)(z0) = α1
∂f

∂x
(z0) + α2

∂f

∂y
(z0) (3.3)

where 2πα1 =
R 2π

0
cos θ α(θ, 0) dθ and 2πα2 =

R 2π

0
sin θ α(θ, 0) dθ. Consequently the restriction ∂α,∞ :

C∞(Ω, X) ⊂ C(Ω, X) → C(Ω, X) of ∂α to C∞(Ω, X) is a preclosed operator (cf. F-H. Vasilescu, [28],

Lemma 4.1, p. 1030) hence it admits a unique minimal closed extension ∂α = (∂α,∞)− : D
ˆ

(∂α,∞)−
˜

⊂

C(Ω, X) → C(Ω, X) (the closure of ∂α,∞). We set B1
α(Ω, X) = D

`

∂α

´

. Let µ be the Lebesgue measure

on R
2. We may state (cf. Lemma 4.3 in [28], p. 1031).
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Theorem 7. Let X be a Fréchet space and Ω ⊂ C an open subset. Let f, g ∈ C(Ω, X). The following

statements are equivalent a) f ∈ B1
α(Ω, X) and ∂αf = g, and b) For any ϕ ∈ C∞

0 (Ω)
Z

Ω

(∂αϕ) (z) f(z) dµ(z) = −

Z

Ω

ϕ(z) g(z) dµ(z). (3.4)

Theorem 7 describes the weak solutions to ∂αf = g with g ∈ C(Ω, X). The statement in [28] is however

weaker than the proved result: there one assumes a priori that f ∈ B1
α(Ω, X) while one actually shows

that any continuous function f satisfying (3.4) is of class B1
α. An ingredient in the proof is the fact

that ∂α : B1
α(Ω, X) ⊂ C(Ω, X) → C(Ω, X) is a closed operator (motivating the need to work with the

closure of ∂α,∞).

Note that the function α(θ) = 2 (α1 cos θ + α2 sin θ), 0 ≤ θ ≤ 2π obeys to (3.1) and leads to the

same expression (3.3) for (∂αf)(z0). We work with this choice of α from now on. We may state (cf.

Theorem 6.5 in [29], p. 24)

Theorem 8. Let X be a complex Fréchet space, Ω ⊂ C an open set and f ∈ C(Ω, X). Then i)

if (2πr)−1
R 2π

0
α(θ)f(z + reiθ) dθ converges uniformly on the compact subsets of Ω as r → 0 then

f ∈ B1
α(Ω, X). Also ii) for any f ∈ B1

α(Ω, X)

`

∂αf
´

(z) = lim
r→0

1

2πr

Z 2π

0

α(θ)f(z + reiθ) dθ, z ∈ Ω. (3.5)

The notion of areolar derivative may be extended to vector valued functions (cf. L-J. Nicolescu,

[18], I. Ciorănescu, [6], F-H. Vasilescu, [28]) as follows. Let Ω ⊂ C be a domain and z0 ∈ Ω a point.

Let X be a topological vector space such that X∗ separates points. Let f ∈ C(Ω, X) be a continuous

function such that co[f(∂ω)] is a compact subset of X for any domain ω ⊂ C with simple rectifiable

boundary and such that z0 ∈ ω and ω ⊂ Ω. We set

F (ω) =
1

2i

Z

∂ω

f(z) dz. (3.6)

We adopt the following definition. Let X be a locally convex space. If the following limit exists

ϕ(z0) = lim
diam(ω)→0

F (ω)

|ω|
∈ X (3.7)

then f is said to be (strongly) monogeneous at z0 and ϕ(z0) is referred to as the (strong) areolar

derivative of f at z0. Here |ω| = µ(ω) is the Lebesgue measure of ω. One adopts the traditional

notation ϕ(z0) = (Df/Dω)(z0). Let P be a separating family of seminorms inducing the topology of

X as a locally convex space. By the existence of ϕ(z0) = limdiam(ω)→0 F (ω)/|ω| one means that for

any p ∈ P and any positive integer k ≥ 1 there is r > 0 such that p (F (ω)/|ω| − ϕ(z0)) < 1/k for any

domain ω ⊂ C such that ∂ω is a simple rectifiable curve, z0 ∈ ω and ω ⊂ Dr(z0). Let f ∈ C(Ω, X)

such that the integral (3.6) is well defined. A vector ϕ(x0) ∈ X is the weak areolar derivative of f

at z0 if (3.7) holds in the weak sense i.e. for any Λ ∈ X∗ and any ǫ > 0 there is r > 0 such that

|Λ (F (ω)/|ω| − ϕ(z0))| < ǫ for any domain ω ⊂ C with simple rectifiable boundary ∂ω such that z0 ∈ ω

and ω ⊂ Dr(z0). A function f : Ω → X admitting a weak areolar derivative at z0 ∈ Ω is referred to

as weakly monogeneous at z0. As Λ[F (ω)] = (2i)−1
R

∂ω
Λ[f(z)] dz a function f : Ω → X admitting a

(strong) areolar derivative at z0 has a weak areolar derivative at that point as well.

Let ω = Dr(z0) be a ball in C such that ω ⊂ Ω. Let X be a Fréchet space and f ∈ C(Ω, X). If the

areolar derivative of f at z0 exists then

Df

Dω
(z0) = lim

r→0

F (Dr(z0))

|Dr(z0)|
= lim

r→0

1

2πr

Z 2π

0

eiθf(z0 + reiθ) dθ.
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Then f is α-differentiable with α(θ) = eiθ and (∂αf)(z0) = (Df/Dω)(z0). On the other hand to the

choice α(θ) = eiθ there corresponds (cf. (3.3)) the operator ∂α,∞ = 1
2

(∂/∂x + i ∂/∂y). We maintain

this choice of α for the reminder of this section and drop the index α everywhere i.e. we adopt the

notations ∂ = ∂α and B1(Ω, X) = B1
α(Ω, X). We say that f ∈ B1(Ω, X) is analytic in Ω if ∂f = 0. Let

O(Ω, X) be the set of all analytic functions f ∈ B1(Ω, X). We may state (cf. [29])

Theorem 9. Let X be a complex Fréchet space and Ω ⊂ C an open set. Let {fν}ν≥1 ⊂ O(Ω, X)

converge in C(Ω, X) as ν → ∞ to f ∈ C(Ω, X). Then f ∈ O(Ω, X).

The following version of the Cauchy-Pompeiu formula (for vector-valued functions of class B1)

holds (cf. Theorem 7.1 in [29], p. 26)

Theorem 10. Let X be a complex Fréchet space, Ω ⊂ C an open set and f ∈ B1(Ω, X). Let ω ⊂ C

be a relatively compact open set such that ω ⊂ Ω and ∂ω is a finite union of Jordan rectifiable curves.

Then

f(z) =
1

2πi

Z

∂ω

(ζ − z)−1f(ζ)dζ +
1

2πi

Z

ω

(ζ − z)−1 `

∂f
´

(ζ) dζ ∧ dζ (3.8)

for any z ∈ ω.

Corollary 1. Let f ∈ O(Ω, X) and let ω ⊂ C be a relatively compact open subset such that ω ⊂ Ω and

∂ω is a finite union of Jordan rectifiable curves. Then

f(z) =
1

2πi

Z

∂ω

(ζ − z)−1f(ζ)dζ (3.9)

for any z ∈ ω.

Corollary 2. Let X be a complex Fréchet space and Ω ⊂ C an open set. Then O(Ω, X) ⊂ C∞(Ω, X).

In particular any analytic function f ∈ O(Ω, X) satisfies the Cauchy-Riemann equation fz = 0 in

Ω (equivalently f is C-differentiable in Ω, cf. also Remark 1 in Appendix A). Then (cf. Lemma 8.6 in

[29], p. 29)

Proposition 1. Let X be a complex Fréchet space and Ω ⊂ C an open set. Let f ∈ O(Ω, X). Let

z ∈ Ω and r > 0 such that Dr(z) ⊂ Ω. Then

f(ζ) =

∞
X

ν=0

(ζ − z)ν

ν!
(∂νf)(z), ζ ∈ Dr(z), (3.10)

and the series in the right hand side of (3.10) is uniformly convergent on any compact subset of Dr(z).

In particular each f ∈ O(Ω, X) is (strongly) holomorphic in Ω.

The basics on power series in Fréchet spaces are given in Appendix A. Let f ∈ O(Ω, X). A point

z0 ∈ C is an isolated singularity of f if z0 6∈ Ω and there is r > 0 such that Dr(z0) \ {z0} ⊂ Ω. An

isolated singularity z0 of f ∈ O(Ω, X) is removable if there is F ∈ O(Ω ∪ {z0}, X) such that F |Ω = f .

As an application of the Cauchy integral formula (3.9) we may prove

Theorem 11. Let X be a complex Fréchet space and Ω ⊂ C an open set. Let z0 ∈ C be an isolated

singularity of f ∈ O(Ω, X). Then z0 is removable if and only if f is bounded in some neighborhood of

z0.

Further details on the theory of monogeneous functions (following [18] and [6]) compared to the

presentation in Section 3 are given in Appendix B.
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4 Holomorphic functions with values in Banach spaces

Let X be a complex Banach space and Ω ⊂ C an open set. If f : Ω → X is C-differentiable then

f : Ω → X is weakly holomorphic hence Cauchy’s integral formula (2.2) holds (cf. Theorem 1 above)

so that (by the proof of Theorem 4 for n = 1) given z0 ∈ Ω and r > 0 such that Dr(z0) ⊂ Ω

f(z) =
∞

X

ν=0

(z − z0)
νxν , xν =

1

2πi

Z

|ζ−z0|=r

f(ζ)

(ζ − z0)ν+1
dζ,

converges absolutely for z ∈ Dr(z0) [i.e. f : Ω → X is (strongly) holomorphic]. The following version

of the identity theorem for holomorphic functions with values in a Banach space is known (cf. e.g. [2],

p. 456)

Theorem 12. Let X be a complex Banach space and Y ⊂ X a closed subspace. Let Ω ⊂ C be a domain

and f : Ω → X a holomorphic function. Let us assume that there is a convergent sequence {zν}ν≥1 ⊂ Ω

such that limν→∞ zn ∈ Ω and f(zν) ∈ Y for any ν ≥ 1. Then f(z) ∈ Y for any z ∈ Ω.

A subset N ⊂ X∗ is norming if ‖x‖1 = supΛ∈N |Λ(x)|, x ∈ X, is a norm on X equivalent to the

original norm ‖ · ‖. A function f : Ω → X is locally bounded if supz∈K ‖f(z)‖ < ∞ for every compact

set K ⊂ Ω. Then (cf. Proposition A.3 in [2])

Theorem 13. Let Ω ⊂ C be an open set and N ⊂ X∗ a norming set. Let f : Ω → X be a locally

bounded function such that

Λ ◦ f ∈ O(Ω), Λ ∈ N. (4.1)

Then f : Ω → X is holomorphic.

Then statement (iii) in Theorem 1 (rephrased for a Banach space X) is of course less general than

Theorem 13 (the requirement of weak holomorphy has been weakened down to (4.1)).

Corollary 3. Let Ω ⊂ C be a domain and ω ⊂ Ω an open subset. Let f : ω → X be a holomorphic

function. Let us assume that there is a norming set N ⊂ X∗ such that for each Λ ∈ N there is a

holomorphic extension FΛ : Ω → C of Λ ◦ f : ω → C. If supΛ∈N, z∈Ω |FΛ(z)| < ∞ then f : ω → X

admits a unique holomorphic extension F : Ω → X.

Let Ω ⊂ C be a domain and let A ⊂ Ω be a subset which contains an accumulation point in Ω.

Vitali’s theorem asserts that given a locally bounded sequence {fν}ν≥1 of holomorphic functions on

Ω such that {fν(z)}ν≥1 converges for each z ∈ A there is a holomorphic function f ∈ O(Ω) such

that {fν}ν≥1 converges to f in the compact open topology. Montel’s theorem states that each locally

bounded sequence {fν}ν≥1 of holomorphic functions on Ω admits a subsequence which converges in the

compact open topology (cf. e.g. [24]). In the language of functional analysis Montel’s theorem asserts

that each bounded subset of O(Ω) (endowed with the compact-open topology) is relatively compact.

Vitali’s and Montel’s theorems are known to be equivalent. The picture is rather different for vector-

valued functions and, in contrast with the scalar case, Montel’s theorem doesn’t hold for holomorphic

functions with values in a Banach space. Nevertheless, a version of Vitali’s theorem was proved by W.

Arendt & N. Nikolski, [1].

Theorem 14. Let X be a complex Banach space. Let Ω ⊂ C be a domain and fν : Ω → X a sequence

of holomorphic functions such that supν≥1, z∈Dr(z0) ‖fν(z)‖ < ∞, Dr(z0) ⊂ Ω. Let us assume that the

set Ω0 = {z ∈ Ω : limν→∞ fν(z) exists} has an accumulation point in Ω. Then there is a holomorphic

function f : Ω → X such that f (k)(z) = limν→∞ f
(k)
ν (z) uniformly on the compact subsets of Ω for any

k ∈ Z, k ≥ 0.
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Another generalization of Vitali’s theorem to the vector-valued case (where holomorphic functions

are replaced by an appropriate sheaf of smooth functions on Ω ⊂ R
n) was produced by E. Jordá Mora,

[14].

Let X be a topological vector space. A subset W ⊂ X∗ is separating if Λ(x) = 0 for each Λ ∈ W

implies x = 0. We may state (cf. again [1]) the following criterion of analyticity

Theorem 15. Let X be a complex Banach space. Let Ω ⊂ C be a domain and f : Ω → X a locally

bounded function. Let W ⊂ X∗ be a separating subspace such that Λ ◦ f ∈ O(Ω) for any Λ ∈ W . Then

f : Ω → X is holomorphic.

The proof follows from Vitali’s theorem (Theorem 14 above), Krein-S̆mulian’s theorem (cf. Theorem

2.7.11 in [16]) and Theorem 13.

A more general version of Theorem 15 was established by F.G. Grosse-Erdmann, [10]. Let X be a

locally convex space. Let B ⊂ X be a closed, absolutely convex and bounded subset. Let XB denote

the linear span over C of B in X. The Minkowski functional of B is µB(x) = inf{t > 0 : t−1x ∈ B} fr

any x ∈ X. The space X is locally complete if (XB , µB) is a Banach space for any B as above. It may

be shown (cf. S.A. Saxon & L.M. Sánchez Ruiz, [22]) that a locally convex space X is locally complete

if and only if
P

ν≥1 aνxν converges in X for every bounded sequence {xν}ν≥1 ⊂ X and every sequence

{aν}ν≥1 ⊂ C with
P∞

ν=1 |aν | < ∞.

Let X be a topological vector space and Ω ⊂ C be an open set. A function f : Ω → X is locally

bounded if for each z ∈ Ω there is a neighborhood z ∈ U ⊂ Ω such that f is bounded on U . We may

state (cf. Theorem 1 in [10], p. 399)

Theorem 16. Let X be a locally complete space. Let Ω ⊂ C be a domain and f : Ω → X a function.

If i) there is a separating subset W ⊂ X∗ such that Λ ◦ f ∈ O(Ω) for any Λ ∈ W , and ii) f is locally

bounded, then f : Ω → X is holomorphic.

It should be mentioned that Theorem 16 has already been applied in an array of situations e.g. to

the summability of power series (cf. K.G. Grosse-Erdmann, [9]), to weighted spaces of vector-valued

holomorphic functions (cf. K.D. Bierstedt & S. Holtmanns, [4]), to Tauberian convergence theorems

(cf. [1]) and to the extension of vector-valued meromorphic functions (cf. E. Jordá Mora, [13]).

Let X be a complex Banach space and C+ = {z ∈ C : Re(z) > 0}. Let Hp(C+, X) consist of all

holomorphic functions f : C+ → X such that ‖f‖Hp(C+,X) = supx>0

“

R +∞

−∞
‖f(x + iy)‖p dy

”1/p

< ∞.

Next we consider Σα = {reiθ ∈ C : r > 0, |θ| < α} and the space Hp(Σα, X) consisting of all

holomorphic functions f : Σα → X such that ‖f‖Hp(Σα,X) = sup|θ|<α

`R ∞

0
‖f(reiθ)‖p dr

´1/p
< ∞. By

a result of A.M. Sedlecki, [23], the spaces Hp(C+, C) and Hp(Σπ/2, C) are isomorphic for all 0 < p < ∞.

In the vector-valued case, as shown by P. Vieten, [30], the spaces Hp(C+, X) and Hp(Σπ/2, X) are

isomorphic for any 1 ≤ p < ∞ and any complex Banach space X. As an application P. Vieten studied

(cf. op. cit.) the boundary behavior of holomorphic functions f ∈ Hp(Σα, X). To report on his findings

we need some preparation. Let Lp(R, X, dt) be the Bochner Lp-space (cf. e.g. [2], p. 14). A function

u ∈ Lp(R, X, dt) is the boundary values of f if f is the Poisson integral of u i.e. f(z) =
R +∞

−∞
Pz(t)u(t)dt,

z ∈ C+ where Pz is the Poisson kernel Pz(t) = (1/π)x[x2 + (y − t)2]−1, t ∈ R, z = x + iy ∈ C+. Let

1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Let Yq(R) = Lq(R, C) for any 1 < q ≤ ∞ and let Y∞(R) be the space of

all continuous functions f : R → C vanishing at infinity. Let 1 < p ≤ ∞. An operator T : Yq(R) → X

is p-bounded if there is u ∈ Lp(R, C) such that ‖Tv‖ ≤
R +∞

−∞
|v(t)|u(t)dt for any v ∈ Yq(R). Cf. J.

Diestel & J.J. Uhl, [7], for the description of p-bounded operators. An operator T : Y∞(R) → X is

1-bounded if there is a function of bounded variation φ : R → R such that ‖Tv‖ ≤
R +∞

−∞
|v(t)|dφ(t)

for any v ∈ Y∞(R). Cf. [2], p. 49-50, for the Riemann-Stieltjes integral of a X-valued function. Let

hp(C+, X) consist of all harmonic functions f : C+ → X such that ‖f‖hp(C+,X) < ∞ where ‖f‖hp(C+,X)
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equals sup
x>0

„

Z +∞

−∞

‖f(x + iy)‖pdy

«1/p

if 1 ≤ p < ∞ and sup
z∈C+

‖f(z)‖ if p = ∞. A complex Banach

space has the Radon-Nikodym property if each Lipschitz function f : [0, +∞) → X is differentiable

a.e. in [0, +∞) (cf. Proposition 1.2.4 in [2], p. 19, for an equivalent description of spaces with the

Radon-Nikodym property). We may state (cf. Theorem 2 in [30])

Theorem 17. Let 1 ≤ p ≤ ∞. A harmonic function f : C+ → X belongs to hp(C+, X) if and only if

there is a p-bounded operator T : Yq(R) → X such that f(z) = T (Pz) = lims→0+

R +∞

−∞
Pz(t)f(s + it)dt

for any z ∈ C+. If 1 < p ≤ ∞ and X has the Radon-Nikodym property there exists u ∈ Lp(R, X) which

is the boundary values of f .

The statements about elements in hp(C+, X) apply to those in Hp(C+, X) as well. To state a

similar result on functions f ∈ Hp(Σα, X) let us set fη(t) = f [|t| exp(i sign(t) η)], t ∈ R, 0 < η < α. A

function u ∈ Lp(R, X) is the boundary values of f ∈ Hp(Σα, X) if

lim
η→α−

Z +∞

−∞

v(t)fη(t)dt =

Z +∞

−∞

v(t)u(t)dt, v ∈ Yq(R).

Then (cf. Theorem 3 in [30])

Theorem 18. Let 1 < p ≤ ∞ and 0 < α < π. For each f ∈ Hp(Σα, X) there is a p-bounded operator

T : Yq(R) → X such that

T (v) = lim
η→α−

Z +∞

−∞

v(t)fη(t)dt, v ∈ Yq(R).

If 1 < p ≤ ∞ and X has the Radon-Nikodym property there exists a function v ∈ Lp(R, X) which is

the boundary values of f .

Boundary values of vector-valued holomorphic functions defined on a half plane in C were previously

studied by M. Itano, [12], by solving inhomogeneous Cauchy-Riemann equations (building on the

ideas of A. Martineau, [15]). The recent work by P. Domański & M. Langenbruch, [8], develops the

theory of hyperfunctions with values in a locally convex (not necessarily metrizable) space X and

looks at the natural limits to such a theory i.e. characterizes the locally convex spaces X for which a

reasonable theory1 of X-valued hyperfunctions exists. Vector-valued hyperfunctions can be interpreted

as boundary values of vector-valued harmonic or holomorphic functions. The existence of X-valued

hyperfunctions is closely related to the solvability of the Laplace equation. A locally convex space X

is (weakly) N -admissible (N ∈ Z, N ≥ 1) if for any (bounded) open set Ω ⊂ R
N the N -dimensional

Laplace operator ∆ : C∞(Ω, X) → C∞(Ω, X) is surjective. By a result in [8] if X is (N +1)-admissible

then a reasonable theory of N -dimensional X-valued hyperfunctions may be built.

5 Vector valued CR functions

Let (M, T1,0(M)) be a CR manifold and Ω ⊂ M an open subset. Let X be a complex topological vector

space. A function f ∈ C1(Ω, X) is said to be a CR function if Z(f) = 0 for any Z ∈ Γ∞(Ω, T1,0(M)).

Let CR1(Ω, X) denote the set of all CR functions f : Ω → X. Let M ⊂ C
n be a CR submanifold.

Given an open subset Ω ⊂ M the CR extension problem is to look for an open set D ⊂ C
n such that

Ω ⊂ D and the sequence O(D, X)
r

−→ CR1(Ω, X) → 0 is exact, where O(D, X) is the space of all

1One that produces a flabby sheaf whose set of sections supported by a compact set K ⊂ RN equals the

space L(A(K), X) of all X-valued linear continuous operators on the space of germs of analytic functions on K

(cf. [8], p. 1098).
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holomorphic functions F : D → X and r is the restriction morphism. The known approaches [i.e. the

analytic disc (cf. [5], p. 206-221) and the Fourier transform (cf. [5], p. 229-244) techniques] to the

solution to the CR extension problem in the scalar case (i.e. X = C) make use of a fundamental result

by M.S. Baouendi & F. Treves, [3]. It is our purpose in the present section to announce an extension of

the quoted result (cf. also Theorem 1 in [5], p. 191) to the case of CR functions with values in a given

complex topological vector space X, as a first step towards the solution to the CR extension problem

(in the vector valued case). We may state

Theorem 19. Let M ⊂ C
n be a real hypersurface of class C2 and p ∈ M . Let X be a complex

topological vector space such that X∗ separates points. For any open neighborhood Ω ⊂ M of p there is

an open set ω ⊂ M with p ∈ ω ⊂⊂ Ω such that for each CR function f ∈ C1(Ω, X) with co [f (ω)] a

compact subset of X there is a sequence {Fk}k≥1 of holomorphic functions Fk ∈ O(Cn, X) such that

Fk → f uniformly on ω as k → ∞.

Our motivation springs from analytic functional calculus (cf. e.g. [26]). The analytic functional

calculus is an algebra homomorphism from the algebra of germs of holomorphic functions on a neigh-

borhood of the joint spectrum of a commutative system of operators, with values in a Banach algebra

(cf. also [29]). We expect that the accomplishment of our program (as to the solution to the CR

extension problem in the vector valued case) will allow for the construction of a CR functional calculus.

Let M be a real hypersurface of C
n of class C2. Let p ∈ M . By a result in [5] (cf. Lemma

1, p. 103) there is a system of holomorphic coordinates for C
n such that p is the origin and M =

{(z = x + iy, w) ∈ C × C
n−1 : y = h(x, w)} where h : R × C

n−1 → R is a function of class C2

such that h(0) = 0 and Dh(0) = 0. We set w = u + iv ∈ C
n−1, t = (x, u) ∈ R × R

n−1 = R
n and

s = (y, v) ∈ R × R
n−1 = R

n. Also let ζ = t + is ∈ C
n. Next we consider H : R

n × R
n−1 → R × R

n−1

given by H(t, v) = (h(x, u + iv), v), t = (x, u), so that H(0) = 0 and (∂H/∂t)(0) = 0. Let δ > 0 and

η ∈ C∞
0 (R) such that 0 ≤ η(t) ≤ 1, η(t) = 1 for |t| < δ, and η(t) = 0 for |t| ≥ 2δ. Let ϕ(z) = η(|z|) for

any z ∈ C
n. We are only interested in the geometry of M ∩D for a small neighborhood D ⊂ C

n of the

origin hence from now we replace M by Mϕ = {(x + iy, w) : y = hϕ(x, w)} where hϕ = ϕh. To keep

notation simple we drop ϕ yet we may assume that supp(h) ⊂ T × V for some neighborhoods of the

origin T ⊂ R
n and V ⊂ R

n−1. One has M ∩ D = {t + iH(t, v) : t ∈ T, v ∈ V } hence M ∩ D carries a

foliation F such that (M ∩ D)/F = {Mv(T ) : v ∈ V } where Mv(T ) = {t + iH(t, v) : t ∈ T}.

Let ϕ ∈ C∞
0 (Rn) such that Γ = supp(ϕ) ⊂ T and ϕ(t) = 1 for any t ∈ T ′ and some open set

T ′ ⊂ R
n with 0 ∈ T ′ ⊂⊂ T . Let g(t + is) = ϕ(t) for any t + is ∈ C

n. Also we set 〈ζ〉 =
Pn

j=1 ζ2
j for

each ζ ∈ C
n. Let us consider the map ζ : R

n × R
n−1 → C

n given by ζ(t, v) = t + iH(t, v), t ∈ R
n,

v ∈ R
n−1.

Lemma 3. Let X be a complex topological vector space such that X∗ separates points and Ω = M ∩D.

Let Kv = ζ(Γ, v) and f ∈ C(Ω, X) such that co[f(Kv)] is a compact subset of X. Then for any

ζ ∈ Mv (T ′), v ∈ V

lim
ǫ→0+

ǫ−n

πn/2

Z

ξ∈Mv(T )

g(ξ) exp
˘

−ǫ−2〈ζ − ξ〉
¯

f(ξ) dξ1 ∧ · · · ∧ dξn = f(ζ).

The limit is uniform in v ∈ V and ζ ∈ Mv (T ′).

Finally Theorem 19 follows from Lemma 4 below (stated under the assumptions of Lemma 3)

Lemma 4. Let f ∈ C1(Ω, X) be a CR function defined on a neighborhood Ω of the origin in M such

that co [f (K0)] is compact in X. There is an open set Ω′ ⊂ M with 0 ∈ Ω′ ⊂⊂ Ω such that for any

ζ ∈ Ω′

lim
ǫ→0+

ǫ−n

πn/2

Z

ξ∈M0(T )

g(ξ) exp
˘

−ǫ−2〈ζ − ξ〉
¯

f(ξ) dξ1 ∧ · · · ∧ dξn = f(ζ)
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and the convergence is uniform in ζ ∈ Ω′.

Corollary 4. Let M ⊂ C
n be a real hypersurface of class C2 and p ∈ M . Let X be a complex Fréchet

space. For any open neighborhood Ω ⊂ M of p there is an open set ω ⊂ M with p ∈ ω ⊂ Ω such that

each X-valued CR function of class C1 on Ω may be uniformly approximated on ω by a sequence of

X-valued holomorphic functions on C
n.

A. Power series arguments

1) Let X be a complex topological vector space and Ω ⊂ C an open set. If z = x+iy we set as customary

∂/∂z = 1
2
(∂/∂x − i ∂/∂y) and ∂/∂z = 1

2
(∂/∂x + i ∂/∂y). Let f : Ω → X be C-differentiable at z0 ∈ Ω.

Then f admits partial derivatives at z0. Precisely if f ′(z0) = limz→z0
(z − z0)

−1[f(z) − f(z0)] ∈

X then (∂f/∂x)(z0) = f ′(z0) and (∂f/∂y)(z0) = i f ′(z0). In particular (∂f/∂z)(z0) = f ′(z0) and

(∂f/∂z)(z0) = 0. Also f is differentiable at z0 (as a function of two real variables) and (dz0
f)h = f ′(z0)h

for any h ∈ C. Viceversa if f : Ω → X is differentiable at z0 and (∂f/∂z)(z0) = 0 then f is C-

differentiable at z0 and limz→z0
(z − z0)

−1[f(z) − f(z0)] = (∂f/∂x)(z0).

2) Let X be a topological vector space and {xν}ν≥0 ⊂ X. If
P

ν≥0 xν is convergent then xν → 0

on X as ν → ∞.

3) Let X be a Fréchet space and {xν}ν≥0 a sequence in X. Let P be a separating family of

seminorms defining the topology of X. If
P∞

ν=0 p(xν) < ∞ for each p ∈ P then the series
P

ν≥0 xν is

convergent in X.

4) Let X be a complex Fréchet space and {xν}ν≥0 ⊂ X. If there is z0 ∈ C \ {0} such that
P

ν≥0 zν
0xν is convergent then

P

ν≥0 zνxν is convergent for any z ∈ D|z0|(0). Also
P

ν≥0 zνxν is

uniformly convergent for z ∈ Dr(0) for any 0 < r < |z0|. The convergence radius of
P

ν≥0 zνxν

is taken to be R = sup{|z0| :
P

ν≥0 zν
0xν is convergent in X}. For each p ∈ P we set ℓ(p) =

lim supν→∞ p (xν)1/ν . We may state

Proposition 2. i) If 0 < ℓ(p) < a for some a > 0 and any p ∈ P we set R = inf {1/ℓ(p) : p ∈ P}. Then

R > 0 and the series
P

ν≥0 zνxν is convergent (respectively divergent) for any z ∈ DR(0) (respectively

for any z ∈ C \ DR(0)).

ii) If 0 < ℓ(p) < ∞ for any p ∈ P yet there is a sequence {pj}j≥1 ⊂ P such that limj→∞ ℓ(pj) = ∞

or ℓ(p) = ∞ for some p ∈ P then
P

ν≥0 zνxν is divergent for any z ∈ C \ {0}.

iii) If ℓ(p) = 0 for some p ∈ P let P0 = {p ∈ P : ℓ(p) = 0} and R = inf {1/ℓ(p) : p ∈ P \ P0}.

If sup{ℓ(p) : p ∈ P \ P0} < ∞ then R > 0 and
P

ν≥0 zνxν is convergent for any z ∈ DR(0) while if

sup{ℓ(p) : p ∈ P \ P0} = ∞ then R = 0 and
P

ν≥0 zνxν is divergent for any z ∈ C \ {0}.

By slightly restating Proposition 2 one has

Corollary 5. Let X be a complex Fréchet space and {xν}ν≥1 ⊂ X. Let P be a separating family

of seminorms determining the topology of X and ℓ(p) = lim supν→∞ p (xν)1/ν
for each p ∈ P. Let

P0 = {p ∈ P : ℓ(p) = 0} and R = inf{1/ℓ(p) : p ∈ P \ P0}. Then R is the radius of convergence

of the series
P

ν≥0 zνxν . Precisely a) if P0 = P then R = ∞ and b) if P \ P0 6= ∅ then either

supp∈P\P0
ℓ(p) = ∞ and then R = 0 or supp∈P\P0

ℓ(p) < ∞ and then 0 < R < ∞.

5) The derivative of S =
P

ν≥0 zνxν is by definition the series S′ =
P

ν≥0(ν +1)zνxν+1. If {an}n≥1

is a sequence of nonnegative numbers then lim supn→∞ [(n + 1)an+1]
1/n = lim supn→∞ a

1/n
n hence S

and its derivative have the same radius of convergence. Then

Proposition 3. Let R be the radius of convergence of the series S =
P

ν≥0 zνxν . If R > 0 let

fS : DR(0) → X given by fS(z) =
P∞

ν=0 zνxν for any |z| < R. Then fS is C-differentiable on DR(0)

and f ′
S(z) = fS′(z) for any |z| < R.



Vector valued holomorphic functions 223

An alternative approach to Proposition 3 was devised by F-H. Vasilescu (cf. Lemma 8.5 in [29], p.

29)

Proposition 4. Let X be a complex Fréchet space and {pm}m≥1 a countable family of seminorms deter-

mining the topology of X. Let {xν}ν≥0 ⊂ X be a sequence such that ℓ = supm≥1 lim supν→∞ pm(xν)1/ν <

∞. Then the function f : Dr(z) → X given by f(z) =
P∞

ν=0 zνxν for any z ∈ D1/ℓ(0) is analytic that

is f ∈ O(D1/ℓ(0), X) [with D1/ℓ(0) = C when ℓ = 0].

B. (α)-Holomorphic functions with values in Fréchet spaces

Let X be a complex Fréchet space and f : Ω → X a monogeneous function defined on an open

set Ω ⊂ C. Following the terminology in [27] we say f is (α)-holomorphic if its areolar derivative

ϕ(z) = (Df/Dω)(z) is continuous at any point z ∈ Ω. Thus the class of (α)-holomorphic functions

may be seen as a generalization of C1(Ω, X). Indeed each f ∈ C1(Ω, X) is (α)-holomorphic and

Df/Dω = fz. Is there an analog to the Cauchy-Pompeiu formula for (α)-holomorphic functions? At

this stage of the exposition of the theory, although a (α)-holomorphic function is α-differentiable with

α(θ) = eiθ, Theorem 10 doesn’t apply (as it is unknown at this point whether f is B1(Ω, X) regular).

To clear up this matter we transpose a few facts from [27] to the case of X-valued (α)-holomorphic

functions. As emphasized by L-J. Nicolescu, [18], the proofs are but straightforward verifications.

A function f : Ω → X is weakly (α)-holomorphic if Λ ◦ f : Ω → C is (α)-holomorphic as a scalar

valued function (cf. [27], p. 8) for each Λ ∈ X∗. Any (α)-holomorphic function is weakly (α)-

holomorphic. Let ω ⊂ C be a domain such that ω ⊂ Ω and Γ = ∂ω is a closed rectifiable curve. If f is

(α)-holomorphic then

Λ

»

Df

Dω
(z)

–

=
D(Λ ◦ f)

Dω
(z) , z ∈ Ω, Λ ∈ X∗, (B..1)

hence (by (19) in [27], p. 28)

1

2πi

Z

Γ

f(z) dz =
1

π

Z

ω

Df

Dω
(z) dµ(z). (B..2)

Cf. also [18], p. 1008. As a consequence of (B..2) the class of (α)-holomorphic functions may be seen as

a generalization of O(Ω, X). Indeed if Df/Dω = 0 then (by (B..2))
R

Γ
f(z) dz = 0 for any Γ ∈ Γ(Ω) so

that
R

Γ
Λ[f(z)] dz = 0 for any Λ ∈ X∗. Thus (by the classical Cauchy theorem) f is weakly holomorphic

in Ω and we may use Theorem 1 in Section 1 to conclude that f is strongly holomorphic.

Let f : Ω → X be a (α)-holomorphic function. Then (by (22) in [27], p. 33, and our (B..1))

f(ζ) =
1

2πi

Z

Γ

(z − ζ)−1f(z) dz −
1

π

Z

ω

(z − ζ)−1ϕ(z) dµ(z). (B..3)

Cf. also (2) in [18], p. 1009. This is the Cauchy-Pompeiu type formula we were seeking for. We may

state

Theorem 20. Let f : Ω → X be a (α)-holomorphic function. Let ω ⊂ C be a domain such that ω ⊂ Ω

and Γ = ∂ω ∈ Γ(Ω). i) If the areolar derivative of f is a holomorphic function i.e. Df/Dω = h for

some h ∈ O(Ω, X) then

2πif(ζ) =

Z

Γ

1

z − ζ
[f(z) − z h(z)] dz +

Z

Γ

ζ

z − ζ
h(z) dz. (B..4)

In particular f ∈ C∞(Ω, X). ii) If f admits continuous areolar derivatives Dνf/Dων ∈ C(Ω, X) of

arbitrary order ν ≥ 0 which are equi-bounded in Ω then

f(ζ) =
1

2πi

∞
X

ν=0

Z

Γ

1

ν!

`

ζ − z
´ν

z − ζ

Dνf

Dων
(z) dz (B..5)
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and the convergence is uniform in ζ ∈ ω.

The formulae (B..4)-(B..5) for X = C are due to N. Teodorescu, [27], p. 13-19. When X is a

complex Banach space Theorem 20 was established by L-J. Nicolescu, [18].

Let Ck
z (Ω, X) be the class of all (α)-holomorphic functions f : Ω → X admitting continuous areolar

derivatives Dνf/Dων ∈ C(Ω, X) up to order 0 ≤ ν ≤ k. We may state

Theorem 21. (I. Ciorănescu, [6]) Let k ≥ 1. If Λ◦f ∈ Ck+1
z (Ω, C) for any Λ ∈ X∗ then f ∈ Ck

z (Ω, X).

In particular the following analog (where areolar derivatives replace ordinary derivatives) to a result

by A. Grothendieck, [11], holds (cf. I. Ciorănescu, [6], p. 843).

Corollary 6. Let X be a complex Fréchet space, Ω ⊂ C an open set, and f : Ω → X a continuous

function. Then f ∈ C∞
z (Ω, X) if and only if Λ ◦ f ∈ C∞

z (Ω, C) for any Λ ∈ X∗.

There is yet another approach to the Cauchy-Pompeiu type formula (B..3) closing our parallel

among the work in [18], [6], and the exposition in [28]. Let f : Ω → X be a monogeneous function with

the areolar derivative ϕ. Let P be a separating family of seminorms determining the topology of X.

Following [27], p. 26, we say (1/|ω|)
R

Γ
f(z) dz converges uniformly to ϕ(z0) as ω → z0 ∈ Ω if for any

p ∈ P and any integer k ≥ 1 there is ρ = ρ(p, k) (independent of z0) such that

1

2πi|ω|

Z

Γ

f(z) dz −
1

π
ϕ(z0) ∈ V (p, k) (B..6)

for any domain ω ⊂ C such that ω ⊂ Dρ(z0) and Γ = ∂ω ∈ Γ(Ω). We may show that

Theorem 22. Let X be a complex Fréchet space and Ω ⊂ C an open set. Let f ∈ C1
z (Ω, X) be a

(α)-holomorphic function and z0 ∈ Ω. Then (1/|ω|)
R

Γ
f(z) dz converges uniformly to ϕ(z0) as ω → z0.

For X = C Theorem 22 is due to N. Teodorescu, [27], p. 28. As a consequence of Theorem 22 it

follows that (2πr)−1
R 2π

0
eiθf(z0 + reiθ) dθ converges uniformly in z0 ∈ Ω as r → 0 hence (by Theorem

8) f ∈ B1(Ω, X). Therefore Theorem 10 may be applied thus yielding (B..3). Theorem 22 follows from

Lemma 5. Let f ∈ C1
z (Ω, X) be a (α)-holomorphic function and ϕ = Df/Dω ∈ C(Ω, X) its areolar

derivative. Then for any p ∈ P and any integer ℓ ≥ 1 there is r = r(p, ℓ) > 0 such that for each z0 ∈ Ω

one has ϕ(z) − ϕ(z0) ∈ V (p, ℓ) for any z ∈ ω and any domain ω ⊂ C such that ω ⊂ Dr(z0).
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