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Ianuş’ enthusiasm and dedication to mathematics has been an inspiration to us for many years.

1 Introduction and the Goldberg Conjecture

In 1969 S. I. Goldberg proved that if the curvature operator of an almost Kähler manifold commutes with

the almost complex structure, then the manifold is Kähler [13] and conjectured that a compact almost

Kähler Einstein manifold is Kähler. In full generality the conjecture is still open, but many partial

results have been achieved. Under the additional assumption of non-negative scalar curvature the

Goldberg conjecture was proved by K. Sekigawa in 1987 [24]. Without the assumption of compactness

the conjecture is false; this already follows from a 1970 paper of Alekseevskii [1], but this went unnoticed

for a long time. More recent non-compact counterexamples have been obtained: Ricci flat 4-dimensional

examples in [19], [7], [2], and homogeneous examples in all dimensions 2n ≥ 6 [4].

Several works have considered natural ways of extending the Goldberg conjecture by relaxing the

Einstein condition. One such extension was suggested by Professor Ianus and the first author [9]:

instead of the Einstein assumption, ask only that the Ricci tensor commute with the almost complex

structure. There is still not known any 4-dimensional example of a compact almost Kähler, non-Kähler

manifold with J-invariant Ricci tensor. In dimension 6 and higher such examples do exist, as follows

from the work of Davidov and Mus̆karov [12].

Recently there has been some interest in other curvature conditions that imply that an almost

Kähler structure is Kählerian, especially questions involving the Weyl conformal curvature tensor.

This is natural in view of the fact that Sekigawa’s proof of the Goldberg conjecture in the case of

non-negative scalar curvature involves the Pontrjagin classes and the Pontrjagin classes are conformal
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invariants [14]. In particular Satoh [23] and Kirchberg [16] have observed that Sekigawa’s theorem

can be generalized by replacing the Einstein condition with weaker assumptions on the Weyl and Ricci

curvature of the almost Kähler structure. The goal of this note is to give a slightly different presentation

of some results of Kirchberg from [16]. As a byproduct, we will obtain in dimension 4 an extension of

Theorem 3.7 of [16] (see Theorem 3.9 in Section 3).

In contrast to the fact that there are no non-Kähler almost Kähler manifolds of constant curvature

(see [22], [20], [7]), there are non-compact conformally flat non-Kähler almost Kähler manifolds, in

particular H3 × R, H3 being hyperbolic 3-space [21]. Further non-compact examples and discussion

can be found in [11].

2 Notations and Preliminaries

Let (M2n, g, J, ω) be an almost Hermitian manifold with almost complex structure J , compatible metric

g and fundamental 2-form ω(X, Y ) = g(JX, Y ). The manifold is almost Kähler if ω is closed (hence

symplectic). Our convention for the curvature tensor is

RXY Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z .

Using the metric to raise or lower indices, instead of the classical (1, 3) curvature tensor, we’ll think of

R as a (0, 4) tensor, or, most often, as a section of the bundle S2(Λ2M).

The Ricci tensor and ∗-Ricci tensor are then given by

Ric(X, Y ) =< RXek
Y, ek >, Ric∗(X, Y ) =< RJXJek

Y, ek >

where the ek’s denote a local orthonormal basis and the repeated index indicates a sum over the basis.

The traces of these Ricci tensors define the scalar curvature s and the ∗-scalar curvature s∗, respectively.

The Ricci tensor admits a decomposition into J-invariant and J-anti-invariant parts given by

Ric′(X, Y ) =
1

2

“

Ric(X, Y ) + Ric(JX, JY )
”

,

Ric′′(X, Y ) =
1

2

“

Ric(X, Y ) − Ric(JX, JY )
”

.

The ∗-Ricci tensor is, in general, not symmetric, but satisfies the relation

Ric∗(JX, JY ) = Ric∗(Y, X) .

This allows the definition of a 2-form ρ∗ by

ρ∗(X, Y ) = Ric∗(JX, Y ) ,

which is called the ∗-Ricci form of the almost Hermitian structure. We also define the Ricci form ρ by

ρ(X, Y ) = Ric′(JX, Y ) .

The Ricci form ρ is, by definition, J-invariant, the ∗-Ricci form ρ∗ in general is not, and we denote its

J-invariant and J-anti-invariant parts by the use of ′ and ′′, respectively. The Weitzenböck formula

applied to the harmonic form ω implies the well known relation between the Ricci forms of an almost

Kähler structure

ρ∗ − ρ =
1

2
∇∗∇ω . (1)

Taking the trace of (1), one gets the difference of the two types of scalar curvatures

s∗ − s = |∇ω|2 =
1

2
|∇J |2 . (2)
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Note that we use the convention that the point-wise norm on the bundle Λ2M has a factor of 1/2

compared with the norm on Λ1M ⊗ Λ1M . Consequently, as we most often think of the curvature

tensor R as a section of the bundle S2(Λ2M), its point-wise norm is defined by

|R|2 =
1

4

X

(Rijkl)(Rijkl) .

The well known orthogonal decomposition of the curvature (for dimension 2n) is given by (see for

instance [8])

R =
s

4n(2n − 1)
g ©∧ g +

1

(2n − 2)
(Ric0 ©∧ g) + W , (3)

where the notations are the traditional ones, that is:

• W denotes the Weyl curvature tensor and relation (3) can be used as its definition (as a (0,4)

tensor).

• Ric0 = Ric − s
2n

g is the trace free part of the Ricci tensor;

• ©∧ denotes the Kulkarni-Nomizu product; if h and k are symmetric 2-tensors, then h ©∧ k is the

curvature type 4-tensor given by

(h ©∧ k)XY ZT = hXZkY T + hY T kXZ − hY ZkXT − hXT kY Z .

The existence of the compatible almost complex structure greatly refines the decomposition (3). The

reader can consult [25]. One particular U(n)-component of the curvature will appear in our formulae,

so we define it below.

W ′′

XY ZT =
1

8

“

WXY ZT − WJXJY ZT − WXY JZJT + WJXJY JZJT

−WXJY ZJT − WJXY ZJT − WXJY JZT + WJXY JZT

”

. (4)

It is the part of the Weyl tensor which acts like an endomorphism on the bundle of J-anti-invariant

2-forms and anti-commutes with the action of J on this bundle, hence the notation.

We denote by d∇ : ΛkM ⊗ΛjM → Λk+1M ⊗ΛjM the differential on ΛjM -valued k-forms, j = 1, 2,

defined using the Levi-Civita connection ∇; δ∇ denotes the adjoint of d∇.

Thinking of the curvature and the Weyl tensors R and W as Λ2M -valued 2-forms, the differential

Bianchi relation can be written as

δ∇R = −d∇Ric , δ∇W = −
2n − 3

2n − 2
d∇(Ric −

1

4n − 2
sg) , (5)

where in the right hand-side a symmetric 2-tensor b is seen as a Λ1M -valued 1-form and d∇b ∈

Λ2M ⊗ Λ1M ≃ Λ1M ⊗ Λ2M is defined by

(d∇b)AB(X) = (∇Ab)(B, X) − (∇Bb)(A, X) , ∀A, B, X ∈ TM.

The tensor d∇δ∇R will be important in what follows. Applying the differential d∇ : Λ1M ⊗ Λ2M →

Λ2M ⊗ Λ2M in (5), we get different equivalent expressions for it

d∇δ∇R = −d∇(d∇Ric) =
2n − 2

2n − 3
d∇δ∇W −

1

4n − 2
d∇(d∇(sg)) . (6)

Additional matters of terminology will be discussed as they occur.
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3 Sekigawa’s integral formula

The original approach of Sekigawa [24] was based on Chern-Weil theory. On any almost Kähler man-

ifold (M2n, g, J, ω), one has two natural connections: the Levi-Civita connection ∇ and the canonical

Hermitian connection, also called the Chern connection

e∇XY = ∇XY −
1

2
J(∇XJ)Y

although it was originally defined by Licherowicz [17, 18]. By Chern-Weil theory, the first Pontrjagin

class p1(M) has 4-forms representatives p1(∇), p1(e∇) with respect to either of the two connections.

Then the difference p1(∇) − p1(e∇) is an exact 4-form, so by Stokes theorem, it follows that

Z

M

“

p1(∇) − p1(e∇)
”

∧ ωn−2 = 0.

By explicitly computing the terms involved in the difference p1(∇) − p1(e∇), Sekigawa obtained an

integral formula which yielded the result.

A point-wise version of Sekigawa’s formula has been obtained in [4], Proposition 2.1. We restate

below this result, pointing out the interesting fact, first noted by Kirchberg, that there are actually

two potentially useful formulae whose combination yields the pointwise version of Sekigawa’s formula.

Proposition 3.1. On any almost Kähler manifold (M2n, g, J, ω), the following formulae hold:

〈d∇δ∇R, ω ⊗ ω〉 =
1

2
∆s − 2δ(Jδ(JRic′′)) + |Ric′′|2 (7)

+2〈ρ, φ〉 − 〈ρ,∇∗∇ω〉 ;

〈d∇δ∇R, ω ⊗ ω〉 =
1

2
∆s∗ − 4δ(〈ρ′′

∗ ,∇·ω〉) + 4|W ′′|2 (8)

+
1

2
|φ|2 +

1

2
|∇∗∇ω|2 + 〈ρ,∇∗∇ω〉 ,

where φ denotes the J-invariant 2-form φ(X, Y ) = 〈∇JXω,∇Y ω〉.

Note that the equality of the right hand-sides of (7) and (8) gives the formula in the statement of

Proposition 2.1 in [4], which is the point-wise version of Sekigawa’s formula.

Sketch of the Proof: The two formulae correspond to different ways of computing the the quantity

< d∇δ∇R, ω ⊗ω >. For the first, we use the second Bianchi identity to express d∇δ∇R in terms of the

Ricci tensor (first equality of (6)). This gives

< d∇δ∇R, ω ⊗ ω >= −(∇2
ikRicjl)JijJkl,

where, as usual the repeated indicies sum. After a relatively long computation of getting the J ’s inside

the derivatives, one eventually obtains (7).

For the second formula, one uses the Weitzenböck formula for the curvature tensor due to Bour-

guignon [10]

d∇δ∇R = ∇∗∇R + c(R, R), (9)

and then takes the inner product of both sides with ω ⊗ω. For the explicit expression of the quadratic

in curvature c(R, R) and further details on computation see [4]. 2
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On a compact almost Kähler manifold Kirchberg [16] introduces the quantity

Q(J) = −

Z

M

〈d∇δ∇R, ω ⊗ ω〉 dV. (10)

Note that the definition of Q(J) can be given in terms of the second derivatives of the Ricci tensor (as

Kirchberg originally did)

Q(J) =

Z

M

〈d∇(d∇Ric), ω ⊗ ω〉 dV, (11)

or in terms of the Weyl tensor

Q(J) = −

Z

M

2(n − 1)

2n − 3
〈d∇δ∇W, ω ⊗ ω〉 dV. (12)

From relation (6), we have

〈d∇δ∇R, ω ⊗ ω〉 =
2n − 2

2n − 3
〈d∇δ∇W, ω ⊗ ω〉 +

1

2(2n − 1)
∆s , (13)

so, via (6) and (13), it is clear that the three definitions above for Q(J) are equivalent. Integrating

relations (7) and (8), we get the following integral formulae:

Proposition 3.2. On any compact almost Kähler manifold (M2n, g, J, ω), the following formulae hold:

−Q(J) =

Z

M

“

|Ric′′|2 + 2〈ρ, φ〉 − 〈ρ,∇∗∇ω〉
”

dµg; (14)

−Q(J) =

Z

M

“

4|W ′′|2 +
1

2
|φ|2 +

1

2
|∇∗∇ω|2 + 〈ρ,∇∗∇ω〉

”

dµg. (15)

The formulae above are equivalent with relations (73) and (74) from Proposition 2.5 of [16]. Indeed, the

difference of (14) and (15) is formula (73) of [16] (and, in effect, Sekigawa’s integral formula), whereas

(15) is equivalent to formula (74) of Kirchberg. We now state one of the main results of Kirchberg in

[16] (Theorem 3.6), extending an earlier result of Satoh [23]:

Theorem 3.3. (Kirchberg, [16]) Let (M2n, g, J, ω) be a compact almost Kähler manifold. If Q(J) = 0

and Ric is non-negative definite, then J is integrable.

Proof: Summing relations (14) and (15) and using the assumption Q(J) = 0, we get

0 =

Z

M

“

|Ric′′|2 + 2〈ρ, φ〉 + 4|W ′′|2 +
1

2
|φ|2 +

1

2
|∇∗∇ω|2

”

dµg.

Now notice that all the terms in the right hand-side are non-negative. Indeed, the only term with a

possible sign ambiguity is 〈ρ, φ〉. But Ric is non-negative definite by assumption and so is φ by its

definition, thus 〈ρ, φ〉 ≥ 0.

Kirchberg goes on to describe a variety of cases when Q(J) = 0.

Proposition 3.4. (Kirchberg, [16]) Let (M2n, g, J, ω) be a compact almost Kähler manifold. Then

Q(J) = 0 is a consequence of any one of the following conditions:

• [∇Ric, J ] = 0

• [∇2
X,Y Ric + ∇2

Y,XRic, J ] = 0

• δW = 0, i.e. harmonic Weyl tensor.
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Note that the condition [∇Ric, J ] = 0 holds not only when the metric is Einstein, but also when the

structure (g, J) is Kähler.

We next observe that formula (14) can be used to obtain a characterization of compact Einstein almost

Kähler manifolds in terms of, a priori, weaker conditions.

Proposition 3.5. Let (M2n, g, J, ω) be a compact almost Kähler manifold. Then the following are

equivalent: (a) The metric is Einstein; (b) Q(J) = 0 and Ric′0 = 0 (i.e. the J-invariant part of Ricci

is, at each point, a multiple of the metric).

Proof: The implication (a) ⇒ (b) is clear and (b) ⇒ (a) follows from relation (14) which can be

rewritten as

−Q(J) =

Z

M

“

|Ric′′|2 + 2〈ρ0, φ〉 − 〈ρ0,∇
∗∇ω〉

”

dµg . (16)

This holds because

2 < φ, ω >=< ∇∗∇ω, ω >= |∇ω|2 .

For the rest of the paper we specialize to dimension 2n = 4. There are several particularities of this

dimension. First of all, the trace-free parts of the Ricci and the *-Ricci forms coincide. In view of (1),

this can be written as

(ρ∗)
′ − ρ =

1

2
(∇∗∇ω)′ =

s∗ − s

4
ω =

1

4
|∇ω|2ω . (17)

A consequence of (17) is that

|∇∗∇ω|2 = |(∇∗∇ω)′|2 + |(∇∗∇ω)′′|2 =
1

2
|∇ω|4 + 4|ρ′′

∗ |
2 . (18)

Secondly, in dimension 4, the Kähler nullity Dp = {X ∈ TpM | ∇Xω = 0} has dimension 2 or 4 at all

points p ∈ M . This implies that the form φ has a double eigenvalue 0 and a double eigenvalue |∇ω|2.

In particular,

|φ|2 = |∇ω|4 . (19)

Finally, in dimension 4, we have the self-dual, anti-self-dual splitting of the bundle of 2-forms

Λ2M = Λ+M ⊕ Λ−M ,

and the Weyl tensor splits accordingly as W = W+ + W−. The anti-self-dual part W− is U(2)-

irreducible, whereas the self-dual part W+ splits in three components W+
i , i = 1, 2, 3: W+

1 is determined

by the conformal scalar curvature

κ =
1

3
< W+(ω), ω > ;

W+
2 is determined by the J-anti-invariant part of the *-Ricci form, ρ′′

∗ ; W+
3 is just the component W ′′

defined earlier.

The point that interests us is that g is anti-self-dual, i.e. W+ ≡ 0, if and only if κ ≡ 0, ρ′′

∗ ≡ 0 and

W ′′ ≡ 0. For more details on 4-dimensional almost Kähler geometry one can consult, for instance, [3].

Using the above 4-dimensional features, the integral formulae of Proposition 3.2 can be rewritten

as follows

Proposition 3.6. On a 4-dimensional almost Kähler manifold (M4, g, J, ω), the following formulae

hold:

−Q(J) =

Z

M

“

|Ric′′|2 + 2〈ρ0, φ〉) dµg; (20)
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−Q(J) =

Z

M

“

4|W ′′|2 + 2|ρ′′

∗ |
2 +

κ

4
|∇ω|2

”

dµg. (21)

Proof: Relation (20) is immediate from (16) and (17). Formula (21) follows from (15), taking into

account (17), (18), (19) and the fact that the conformal scalar curvature κ is related to s∗ and s by

κ =
3s∗ − s

2
= s∗ +

s∗ − s

2
= s∗ +

|∇ω|2

2
. (22)

From (21) and (22), we get the following 4-dimensional result of Kirchberg ([16] Theorem 3.7):

Theorem 3.7. (Kirchberg) Let (M4, g, J, ω) be a compact 4-dimensional almost Kähler manifold. If

Q(J) = 0 and s∗ ≥ 0, then J is integrable.

Our form of the integral formula (21) suggests that it may be possible to replace the condition

s∗ ≥ 0 with the weaker one κ ≥ 0. Indeed, under the assumption Q(J) = 0, we still get κ|∇ω|2 ≡ 0

on M . We would like to conclude that either κ ≡ 0 or ∇ω ≡ 0 on M . However, for arbitrary almost

Kähler structures, it may happen that ∇ω = 0 on large open sets without having the same property

on the whole M . In other words, there is no unique continuation property for ∇ω for arbitrary almost

Kähler structures. Recall that a map u : M −→ E between connected Riemannian manifolds is said

to have the weak unique continuation property if the constancy of u on an open subset of M implies

the constancy on all of M . The map u has the strong unique continuation property if, instead of local

constancy, u has contact of infinite order with the constant map at a given point (cf. [15]). A classical

result on unique continuation is the following theorem of Aronszajn:

Theorem 3.8. (Aronszajn, [5]) If M and E are Riemannian manifolds, then a a point-wise estimate

|∇∗∇u|2 ≤ K
“

|∇u|2 + |u|2
”

, (23)

for some constant K, implies that the map u : M −→ E satisfies the strong unique continuation

property.

We can then state the following slight improvement of Theorem 3.7:

Theorem 3.9. Let (M4, g, J, ω) be a compact 4-dimensional almost Kähler manifold. If Q(J) = 0 and

κ ≥ 0, then either J is integrable or g is anti-self-dual.

Proof: From the relation (21) the assumptions κ ≥ 0 and Q(J) = 0 imply not only κ|∇ω|2 ≡ 0, but

also W ′′ ≡ 0 and ρ′′

∗ ≡ 0 on M . For almost Kähler 4-manifolds with W ′′ ≡ 0 and ρ′′

∗ ≡ 0, it was

shown in [3] (see Remark 1(i)) that an estimate of the form (23) does hold for u = ∇ω, so the unique

continuation property for ∇ω does hold in this case. It follows that either ∇ω ≡ 0, or κ ≡ 0 on M .

Since W ′′ ≡ 0 and ρ′′

∗ ≡ 0, the second condition corresponds to g being anti-self-dual.

Remark: In his thesis [6], John Armstrong showed that there exist compact strictly almost Kähler,

anti-self-dual metrics on certain ruled surfaces. Thus, from the point of view of the conclusion, the

result of Theorem 3.9 is optimal. It remains to be seen if the condition Q(J) = 0 can be replaced by a

conformally invariant assumption to obtain a fully conformal extension of Theorem 3.9.
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