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Abstract

The aim of this paper is to study integer rounding properties of various

systems of linear inequalities to gain insight about the algebraic properties

of Rees algebras of monomial ideals and monomial subrings. We study

the normality and Gorenstein property—as well as the canonical module

and the a-invariant—of Rees algebras and subrings arising from systems

with the integer rounding property. We relate the algebraic properties of

Rees algebras and monomial subrings with integer rounding properties and

present a duality theorem.
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1 Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let v1, . . . , vq be
the column vectors of a matrix A = (aij) whose entries are non-negative integers.
We shall always assume that the rows and columns of A are different from zero.
As usual we use the notation xa := xa1

1 · · ·xan
n , where a = (a1, . . . , an) ∈ Nn.

The monomial algebras considered here are: (a) the Rees algebra

R[It] := R ⊕ It ⊕ · · · ⊕ Iiti ⊕ · · · ⊂ R[t],

where I = (xv1 , . . . , xvq ) ⊂ R and t is a new variable, (b) the extended Rees
algebra

R[It, t−1] := R[It][t−1] ⊂ R[t, t−1],

(c) the monomial subring

K[F ] = K[xv1 , . . . , xvq ] ⊂ R



280 Joseph P. Brennan, Luis A. Dupont and Rafael H. Villarreal

spanned by F = {xv1 , . . . , xvq}, (d) the homogeneous monomial subring

K[Ft] = K[xv1t, . . . , xvq t] ⊂ R[t]

spanned by Ft, (e) the homogeneous monomial subring

K[Ft ∪ {t}] = K[xv1t, . . . , xvq t, t] ⊂ R[t]

spanned by Ft ∪ {t}, (f) the homogeneous monomial subring

S = K[xw1t, . . . , xwr t] ⊂ R[t],

where w1, . . . , wr is the set of all vectors α ∈ Nn such that 0 ≤ α ≤ vi for some
i, and (g) the Ehrhart ring

A(P ) = K[{xati| a ∈ Zn ∩ iP ; i ∈ N}] ⊂ R[t]

of a lattice polytope P .
The aim of this work is to study max-flow min-cut properties of clutters and

integer rounding properties of various systems of linear inequalities—and their
underlying polyhedra—to gain insight about the algebraic properties of these
algebras and viceversa. Systems with integer rounding properties and clutters
with the max-flow min-cut property come from linear optimization problems [23,
24]. The precise definitions will be given in Section 2.

Before stating our main results, we recall a few basic facts about the normality
of monomial subrings. According to [31] the integral closure of K[F ] in its field
of fractions can be expressed as

K[F ] = K[{xa| a ∈ ZA ∩ R+A}], (1.1)

where A = {v1, . . . , vq}, ZA is the subgroup of Zn spanned by A, and R+A is
the cone generated by A. The subring K[F ] equals K[NA], the semigroup ring
of NA. Recall that K[F ] is called integrally closed or normal if K[F ] = K[F ].
Thus K[F ] is normal if and only if

NA = ZA ∩ R+A,

where NA is the subsemigroup of Nn generated by A. The description of the
integral closure given in Eq. (1.1) can of course be applied to any of the monomial
algebras considered here. In particular if A′ is the set

A′ = {e1, . . . , en, (v1, 1), . . . , (vq, 1)},

where ei is the ith unit vector, then ZA′ = Zn+1 and R[It] is normal if and only
if NA′ = Zn+1 ∩ R+A

′. A dual characterization of the normality of R[It] will be
given in Proposition 2.9.
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Recall that the Ehrhart ring A(P ) is always normal [2]. A set A ⊂ Zn is
called a Hilbert basis if NA = R+A ∩ Zn. Note that if A is a Hilbert basis, then
the ring K[F ] is normal.

The contents of this paper are as follows. First we use the theory of blocking
and antiblocking polyhedra [1, 12, 13, 23] to describe when the systems

x ≥ 0; xA ≤ 1, x ≥ 0;xA ≥ 1, xA ≤ 1,

have the integer rounding property (see Definitions 2.2, 2.6, 2.23) in terms of the
normality of the monomial algebras considered here. As usual, we denote the
vector (1, . . . , 1) by 1. If a = (a1, . . . , an) and b = (b1, . . . , bn) are vectors, we
write a ≤ b if ai ≤ bi for all i.

One of the main results of Section 2 is:

Theorem 2.5 The system x ≥ 0; xA ≤ 1 has the integer rounding property if
and only if the subring S = K[xw1t, . . . , xwr t] is normal.

This result was shown in [9] when A is the incidence matrix of a clutter, i.e.,
when the entries of A are in {0, 1}. Recall that a clutter C with finite vertex
set X = {x1, . . . , xn} is a family of subsets of X, called edges, none of which
is included in another. The incidence matrix of a clutter C is the vertex-edge
matrix whose columns are the characteristic vectors of the edges of C. The edge
ideal of a clutter C, denoted by I(C), is the ideal of R generated by all monomials
xe =

∏

xi∈e xi such that e is an edge of C. The Alexander dual of I(C) is the
ideal of R given by I(C)∨ = ∩e∈E(e), where E = E(C) is the edge set of C.

The integer rounding property of some systems has already been expressed in
terms of the normality of monomial algebras [8, 9]. In [8] it is shown that the
system x ≥ 0;xA ≥ 1 has the integer rounding property if and only if R[It] is
normal (this was also observed by N. V. Trung if A is the incidence matrix of
a clutter). Here we complement this fact by presenting a duality between the
integer rounding property of the systems x ≥ 0;xA ≥ 1 and x ≥ 0;xA∗ ≤ 1 valid
for matrices with entries in {0, 1}, where a∗

ij = 1− aij is the ij-entry of A∗. This
duality is extended to a duality between monomial subrings.

Altogether another main result of Section 2 is:

Theorem 2.12 Let A be the incidence matrix of a clutter. If v∗

i = 1− vi and A∗

is the matrix with column vectors v∗

1 , . . . , v∗q , then the following are equivalent:

(a) R[I∗t] is normal, where I∗ = (xv∗

1 , . . . , xv∗

q ).

(b) S = K[xw1t, . . . , xwr t] is normal.

(c) {−e1, . . . ,−en, (v1, 1), . . . , (vq, 1)} is a Hilbert basis.

(d) x ≥ 0;xA∗ ≥ 1 has the integer rounding property.

(e) x ≥ 0;xA ≤ 1 has the integer rounding property.
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Then we present some interesting consequences of this duality. First of all we
recover one of the main results of [34] showing that if

P = {x|x ≥ 0;xA ≤ 1}

is an integral polytope, i.e., P has only integer vertices, and A is a {0, 1}-matrix,
then the Rees algebra R[I∗t] is normal (see Corollary 2.14). This result is related
to perfect graphs. Indeed if P is integral, then v1, . . . , vq correspond to the
maximal cliques (maximal complete subgraphs) of a perfect graph H [4, 21],
and v∗

1 , . . . , v∗q correspond to the minimal vertex covers of the complement of H.
Second we show that if A is the incidence matrix of the collection of basis of a
matroid, then all systems

x ≥ 0;xA ≥ 1, x ≥ 0;xA∗ ≥ 1, x ≥ 0;xA ≤ 1, x ≥ 0;xA∗ ≤ 1

have the integer rounding property (see Corollary 2.15). Third we show that if
A is the incidence matrix of a graph, then R[It] is normal if and only if R[I∗t] is
normal (see Corollary 2.16). We give an example to show that this result does not
extends to arbitrary uniform clutters (see Example 2.17). If A is the incidence
matrix of a graph G, we characterize when I∗ is the Alexander dual of the edge
ideal of the complement of G (see Proposition 2.18). If G is a triangle-free graph,
we show a duality between the normality of I = I(G) and that of the Alexander
dual of the edge ideal of the complement of G (see Corollary 2.19). We show
an example of an edge ideal of a graph whose Alexander dual is not normal (see
Example 2.20). In [34] it is shown that this is never the case if the graph is
perfect, i.e., the Alexander dual of the edge ideal of a perfect graph is always
normal. Finally we recover one of the main results of [17] showing that if A is the
incidence matrix of a clutter C, then C satisfies the max-flow min-cut property if
and only if the set covering polyhedron

Q(A) = {x|x ≥ 0;xA ≥ 1}

is integral and R[It] is normal (see Corollary 2.22).
The last main result of Section 2 is:

Theorem 2.25 If the system xA ≤ 1 has the integer rounding property, then
K[F ] is normal and Zn/ZA is a torsion-free group. The converse holds if |vi| = d
for all i. Here |vi| = 〈vi,1〉.

As a consequence of this result we prove: (i) If A is the incidence matrix of a
connected graph G, then the system xA ≤ 1 has the integer rounding property
if and only if G is a bipartite graph (see Corollary 2.26), and (ii) Let A be the
incidence matrix of a clutter C. If C is uniform, i.e., all its edges have the same
size, and C has the max-flow min-cut property (see Definition 2.21), then the
system xA ≤ 1 has the integer rounding property (see Corollary 2.27).

If A is the incidence matrix of a bipartite graph, a remarkable result of [9]
shows that the system x ≥ 0;xA ≤ 1 has the integer rounding property if and
only if the extended Rees algebra R[It, t−1] is normal.
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Before stating the main results of Sections 3 and 4, we need to introduce the
canonical module and the a-invariant (see Section 3 for additional details). Below
we briefly explain the important role that these two objects play in the general
theory. The subring S is a standard K-algebra because 〈(wi, 1), en+1〉 = 1 for
all i. Here 〈 , 〉 is the standard inner product and ei is the ith unit vector. If S
is normal, then according to a formula of Danilov and Stanley [6] the canonical
module of S is the ideal of S given by

ωS = ({xatb| (a, b) ∈ NB ∩ (R+B)o}), (1.2)

where B = {(w1, 1), . . . , (wr, 1)} and (R+B)o is the relative interior of R+B. This
expression for the canonical module of S is central for our purposes. Recall that
the a-invariant of S, denoted by a(S), is the degree as a rational function of
the Hilbert series of S [31, p. 99]. Thus we may compute a-invariants using the
program Normaliz [3]. Let HS and ϕS be the Hilbert function and the Hilbert
polynomial of S respectively. The index of regularity of S, denoted by reg(S), is
the least positive integer such that HS(i) = ϕS(i) for i ≥ reg(S). The a-invariant
plays a fundamental role in algebra and geometry because one has:

reg(S) =

{

0 if a(S) < 0,
a(S) + 1 otherwise,

see [31, Corollary 4.1.12]. If S is normal, then S is Cohen-Macaulay [19] and its
a-invariant is given by

a(S) = −min{ i | (ωS)i 6= 0}, (1.3)

see [2, p. 141] and [31, Proposition 4.2.3].
In Section 3 we give a general technique to compute the canonical module

and the a-invariant of a wide class of monomial subrings (see Theorem 3.1).
Then in Section 4 we study the canonical module and the a-invariant of mono-

mial subrings arising from integer rounding properties. We give necessary and
sufficient conditions for S to be Gorenstein and give a formula for the a-invariant
of S in terms of the vertices of the polytope P = {x|x ≥ 0;xA ≤ 1}. For use
below let vert(P ) be the set of vertices of P and let ℓ1, . . . , ℓp be the set of all
maximal elements of vert(P ) (maximal with respect to ≤). For each 1 ≤ i ≤ p
there is a unique positive integer di such that the non-zero entries of (−diℓi, di)
are relatively prime.

The main results of Section 4 are as follows.

Theorem 4.2 If the system x ≥ 0;xA ≤ 1 has the integer rounding property,
then the canonical module of S = K[xw1t, . . . , xwr t] is given by

ωS =

({

xatb
∣

∣ (a, b)

(

−d1ℓ1 · · · −dpℓp e1 · · · en

d1 · · · dp 0 · · · 0

)

≥ 1

})

, (1.4)

and the a-invariant of S is equal to −maxi{⌈1/di + |ℓi|⌉}. Here |ℓi| = 〈ℓi,1〉.
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This result complements a result of [9] valid only for incidence matrices of
clutters. If S is normal, the last Betti number in the homogeneous free resolution
of the toric ideal PS of S is equal to ν(ωS), the minimum number of generators
of ωS . This number is called the type of PS . Thus by describing the canonical
module of S we are in fact providing a device to compute the type of PS . Ac-
cording to [28] the number of integral vertices of the polyhedron that defines ωS

(see Eq. (1.4)) is a lower bound for ν(ωS).
Using the description above for ωS we then prove:

Theorem 4.3 Assume that the system x ≥ 0; xA ≤ 1 has the integer rounding
property. If S is Gorenstein and c0 = max{|ℓi| : 1 ≤ i ≤ p} is an integer, then
|ℓk| = c0 for each 1 ≤ k ≤ p such that ℓk has integer entries.

Theorem 4.4 Assume that the system x ≥ 0;xA ≤ 1 has the integer rounding
property. If −a(S) = 1/di + |ℓi| for i = 1, . . . , p, then S is Gorenstein.

As a consequence of Theorems 4.3 and 4.4 we obtain that if P is an integral
polytope, i.e., it has only integral vertices, then S is Gorenstein if and only if
a(S) = −(|ℓi| + 1) for i = 1, . . . , p (see Corollary 4.5).

We also examine the Gorenstein and complete intersection properties of sub-
rings arising from systems with the integer rounding property of incidence ma-
trices of graphs. Let G be a connected graph with n vertices and q edges and
let A be its incidence matrix. Based on a computer analysis, using the program
Normaliz [3], we conjecture a possible description of all Gorenstein subrings S in
terms of the vertices of P (see Problem 4.7). If the system xA ≤ 1 has the integer
rounding property, then we show that K[Ft ∪ {t}] is a complete intersection if
and only if G is bipartite and the number of primitive cycles of G is equal to
q − n + 1 (see Proposition 4.9).

Let G be a bipartite graph and let A be its incidence matrix. A constructive
description of all bipartite graphs such that K[G] = K[xv1 , . . . , xvq ] is a complete
intersection is given in [15]. The Gorenstein property of K[G] has been studied in
[16, 18]. Thus by Lemma 4.8 and [2, Proposition 3.1.19] the Gorenstein property
and the complete intersection property of K[xv1t, . . . , xvq t, t] are well understood
in this particular case. The a-invariant of K[G] has a combinatorial expression
in terms of directed cuts and can be computed using linear programming [28].
Some other expressions for a(K[G]) can be found in [5, 16, 30].

2 Integer rounding properties

We continue to use the notation and definitions used in the introduction. In
this section we introduce and study integer rounding properties, describe some
of their properties, present a duality theorem and show several applications.

Let P be a rational polyhedron in Rn. Recall that the antiblocking polyhedron
of P is defined as:

T (P ) := {z| z ≥ 0; 〈z, x〉 ≤ 1 for all x ∈ P}.
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Lemma 2.1. Let A be a matrix of order n× q with entries in N, let v1, . . . , vq be
the column vectors of A and let {w1, . . . , wr} be the set of all α in Nn such that
α ≤ vi for some i. If P = {x|x ≥ 0; xA ≤ 1}, then

T (P ) = conv(w1, . . . , wr).

Proof: First we show the following equality which is interesting in its own right:

conv(w1, . . . , wr) = Rn
+ ∩ (conv(w1, . . . , wr) + R+{−e1, . . . ,−en}). (2.1)

Clearly the left hand side is contained in the right hand side. Conversely let z be
a vector in the right hand side. Then z ≥ 0 and we can write

z = λ1w1 + · · · + λrwr − δ1e1 − · · · − δnen, (λi ≥ 0;
∑

i λi = 1; δi ≥ 0). (2.2)

Consider the vector z′ = λ1w1 + · · ·+λrwr − δ1e1. We set T ′ = conv(w1, . . . , wr)
and wi = (wi1, . . . , win). We claim that z′ is in T ′. We may assume that δ1 > 0,
λi > 0 for all i, and that the first entry wi1 of wi is positive for 1 ≤ i ≤ s and is
equal to zero for i > s. From Eq. (2.2) we get λ1w11 + · · · + λsws1 ≥ δ1.

Case (I): λ1w11 ≥ δ1. Then we can write

z′ =
δ1

w11
(w1 − w11e1) +

(

λ1 −
δ1

w11

)

w1 + λ2w2 + · · · + λrwr.

Notice that w1−w11e1 is again in {w1, . . . , wr}. Thus z′ is a convex combination
of w1, . . . , wr, i.e., z′ ∈ T ′.

Case (II): λ1w11 < δ1. Let m be the largest integer less than or equal to s
such that λ1w11 + · · · + λm−1w(m−1)1 < δ1 ≤ λ1w11 + · · · + λmwm1. Then

z′ =

m−1
∑

i=1

λi(wi − wi1e1) +

[

δ1

wm1
−

(

m−1
∑

i=1

λiwi1

wm1

)]

(wm − wm1e1) +

[

λm −
δ1

wm1
+

(

m−1
∑

i=1

λiwi1

wm1

)]

wm +

r
∑

i=m+1

λiwi.

Notice that wi − wi1e1 is again in {w1, . . . , wr} for i = 1, . . . ,m. Thus z′ is a
convex combination of w1, . . . , wr, i.e., z′ ∈ T ′. This completes the proof of the
claim. Note that we can apply the argument above to any entry of z or z′ thus we
obtain that z′− δ2e2 ∈ T ′. Thus by induction we obtain that z ∈ T ′, as required.
This completes the proof of Eq. (2.1).

Clearly one has the equality P = {z| z ≥ 0; 〈z, wi〉 ≤ 1∀i} because for each
wi there is vj such that wi ≤ vj . Hence by the finite basis theorem [23] we can
write

P = {z| z ≥ 0; 〈z, wi〉 ≤ 1∀i} = conv(ℓ0, ℓ1, . . . , ℓm) (2.3)

for some ℓ1, . . . , ℓm in Qn
+ and ℓ0 = 0. From Eq. (2.3) we readily get the equality

{z| z ≥ 0; 〈z, ℓi〉 ≤ 1∀i} = T (P ). (2.4)
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Using Eq. (2.3) and noticing that 〈ℓi, wj〉 ≤ 1 for all i, j, we get

Rn
+ ∩ (conv(ℓ0, . . . , ℓm) + R+{−e1, . . . ,−en}) = {z| z ≥ 0; 〈z, wi〉 ≤ 1∀i}.

Hence using this equality and [23, Theorem 9.4] we obtain

Rn
+ ∩ (conv(w1, . . . , wr) + R+{−e1, . . . ,−en}) = {z| z ≥ 0; 〈z, ℓi〉 ≤ 1∀i}. (2.5)

Therefore by Eq. (2.1) together with Eqs. (2.4) and (2.5) we conclude that T (P )
is equal to conv(w1, . . . , wr), as required.

If v1, . . . , vq are {0, 1}-vectors, then the equality of Lemma 2.1 follows directly
from [12, Theorem 8]; see also [13].

Definition 2.2. Let A be a matrix with entries in N. The system x ≥ 0;xA ≤ 1
has the integer rounding property if

⌈min{〈y,1〉| y ≥ 0; Ay ≥ a}⌉ = min{〈y,1〉|Ay ≥ a; y ∈ Nq}

for each integral vector a for which min{〈y,1〉| y ≥ 0; Ay ≥ a} is finite.

If a ∈ Rn, its support is given by supp(a) = {i| ai 6= 0}. Note that a = a+−a−,
where a+ and a− are two non negative vectors with disjoint support called the
positive and negative part of a respectively.

Remark 2.3. Let A be a matrix with entries in N. The system x ≥ 0;xA ≤ 1
has the integer rounding property if and only if

⌈min{〈y,1〉| y ≥ 0; Ay ≥ a}⌉ = min{〈y,1〉|Ay ≥ a; y ∈ Nq}

for each vector a ∈ Nn for which min{〈y,1〉| y ≥ 0; Ay ≥ a} is finite. This follows
decomposing an integral vector a as a = a+ − a− and noticing that for y ≥ 0 we
have that Ay ≥ a if and only if Ay ≥ a+

A rational polyhedron Q is said to have the integer decomposition property if
for each natural number k and for each integer vector a in kQ, a is the sum of k
integer vectors in Q; see [24, pp. 66–82]. Recall that kQ is equal to {ka| a ∈ Q}.

The next criterion will be used to describe the integer rounding property of
the system x ≥ 0;xA ≤ 1 in terms of the normality of a certain subring.

Theorem 2.4. ([1], [24, p. 82]) Let A be a non-negative integer matrix and let
P = {x|x ≥ 0; xA ≤ 1}. The system xA ≤ 1;x ≥ 0 has the integer round-
ing property if and only if T (P ) has the integer decomposition property and all
maximal integer vectors of T (P ) are columns of A (maximal with respect to ≤).

The next result was shown in [9] when A is the incidence matrix of a clutter.
Its proof is similar to that of [9], but it requires some adjustments.
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Theorem 2.5. Let A be a matrix with entries in N and let v1, . . . , vq be the
columns of A. If w1, . . . , wr is the set of all α ∈ Nn such that α ≤ vi for some i,
then the system x ≥ 0; xA ≤ 1 has the integer rounding property if and only if
the subring K[xw1t, . . . , xwr t] is normal.

Proof: Let P = {x|x ≥ 0; xA ≤ 1} and let T (P ) be its antiblocking polyhedron.
By Lemma 2.1 one has

T (P ) = conv(w1, . . . , wr). (2.6)

Let S be the integral closure of S = K[xw1t, . . . , xwr t] in its field of fractions.
By the description of S given in Eq. (1.1) one has

S = K[{xatb | (a, b) ∈ ZB ∩ R+B}],

where B = {(w1, 1), . . . , (wr, 1)}. By Theorem 2.4 it suffices to prove that S
is normal if and only if T (P ) has the integer decomposition property and all
maximal integer vectors of T (P ) are columns of A (maximal with respect to ≤).

Assume that S is normal, i.e., S = S. Let b be a natural number and let a be
an integer vector in bT (P ). Then using Eq. (2.6) it is seen that (a, b) is in R+B.
Since S is normal we have R+B∩ZB = NB. In our situation one has ZB = Zn+1.
Hence (a, b) ∈ NB and a is the sum of b integer vectors in T (P ). Thus T (P ) has
the integer decomposition property. Assume that a is a maximal integer vector
of T (P ). It is not hard to see that (a, 1) is in R+B, i.e., xat ∈ S = S. Thus (a, 1)
is a linear combination of vectors in B with coefficients in N. Hence (a, 1) is equal
to (wj , 1) for some j. There exists vi such that a = wj ≤ vi. Therefore by the
maximality of a, we get a = vi for some i. Thus a is a column of A as required.

Conversely assume that T (P ) has the integer decomposition property and that
all maximal integer vectors of T (P ) are columns of A. Let xatb ∈ S. Then (a, b) is
in the cone R+B. Hence, using Eq. (2.6), we get a ∈ bT (P ). Thus a = α1+· · ·+αb,
where αi is an integral vector of T (P ) for all i. Since each αi is less than or equal
to a maximal integer vector of T (P ), we get that αi ∈ {w1, . . . , wr}. Then
xatb ∈ S. This proves that S = S.

Let A be a matrix with entries in N. Next we study the integer rounding
property of the system x ≥ 0; xA ≥ 1. The aim is to establish a duality with
other systems of linear inequalities.

Definition 2.6. The system x ≥ 0;xA ≥ 1 has the integer rounding property if

max{〈y,1〉| y ≥ 0;Ay ≤ a; y ∈ Nq} = ⌊max{〈y,1〉| y ≥ 0;Ay ≤ a}⌋ (2.7)

for each integral vector a for which the right hand side is finite.

For any rational polyhedron Q in Rn, define its blocking polyhedron B(Q) by:

B(Q) := {z ∈ Rn| z ≥ 0; 〈z, x〉 ≥ 1 for all x in Q}.
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For any matrix A with entries in N, its covering polyhedron Q(A) is defined by:

Q(A) := {x|x ≥ 0;xA ≥ 1}.

If A is the incidence matrix of a clutter C, then the integral vectors of Q(A)
correspond to vertex covers of C and the integral vertices of Q(A) are in one to
one correspondence with the minimal vertex covers of C [14, Corollary 2.3].

The blocking polyhedron of Q(A) can be expressed as follows.

Lemma 2.7. If Q = Q(A), then B(Q) = Rn
+ + conv(v1, . . . , vq).

Proof: The right hand side is clearly contained in the left hand side. Conversely
take z in B(Q), then 〈z, x〉 ≥ 1 for all x ∈ Q and z ≥ 0. Let ℓ1, . . . , ℓr be the
vertex set of Q. In particular 〈z, ℓi〉 ≥ 1 for all i. Then 〈(z, 1), (ℓi,−1)〉 ≥ 0 for
all i. From [17, Theorem 3.2] we get that (z, 1) belongs to the cone generated by

A′ = {e1, . . . , en, (v1, 1), . . . , (vq, 1)}.

Thus z is in Rn
+ + conv(v1, . . . , vq). This completes the proof of the asserted

equality.

The next criterion complements Theorem 2.4.

Theorem 2.8. ([1], [24, p. 82]) The system x ≥ 0;xA ≥ 1 has the integer
rounding property if and only if the blocking polyhedron B(Q) of Q = Q(A) has
the integer decomposition property and all minimal integer vectors of B(Q) are
columns of A (minimal with respect to ≤).

Recall that a set A ⊂ Zn is called a Hilbert basis if NA = R+A ∩ Zn. Note
that if A is a Hilbert basis, then the semigroup ring K[NA] is normal.

Proposition 2.9. Let I = (xv1 , . . . , xvq ) be a monomial ideal and let v∗

i = 1−vi.
Then R[It] is normal if and only if the set

Γ = {−e1, . . . ,−en, (v∗

1 , 1), . . . , (v∗

q , 1)}

is a Hilbert basis.

Proof: Let A′ = {e1, . . . , en, (v1, 1), . . . , (vq, 1)}. Assume that R[It] is normal.
Then A′ is a Hilbert basis. Let (a, b) be an integral vector in R+Γ, with a ∈ Zn

and b ∈ Z. Then we can write

(a, b) = µ1(−e1) + · · · + µn(−en) + λ1(v
∗

1 , 1) + · · · + λq(v
∗

q , 1),

where µi ≥ 0 and λj ≥ 0 for all i, j. Therefore

−(a, b) + b1 = µ1e1 + · · · + µnen + λ1(v1,−1) + · · · + λq(vq,−1),
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where 1 = e1 + · · · + en. This equality is equivalent to

−(a,−b) + b1 = µ1e1 + · · · + µnen + λ1(v1, 1) + · · · + λq(vq, 1).

As A′ is a Hilbert basis we can write

−(a,−b) + b1 = µ′

1e1 + · · · + µ′

nen + λ′

1(v1, 1) + · · · + λ′

q(vq, 1),

where µ′

i ∈ N and λ′

j ∈ N for all i, j. Thus (a, b) ∈ NΓ. This proves that Γ is a
Hilbert basis. The converse can be shown using similar arguments.

A clutter C with finite vertex set X = {x1, . . . , xn} is a family of subsets of
X, called edges, none of which is included in another. Let f1, . . . , fq be the edges
of C and let vk =

∑

xi∈fk
ei be the characteristic vector of fk. The incidence

matrix of C is the n × q matrix with column vectors v1, . . . , vq.

Definition 2.10. Let A = (aij) be a matrix with entries in {0, 1}. Its dual is
the matrix A∗ = (a∗

ij), where a∗

ij = 1 − aij.

The following duality is valid for incidence matrices of clutters. It will be used
later to establish a duality theorem for monomial subrings.

Theorem 2.11. Let A be the incidence matrix of a clutter and let v1, . . . , vq be
its column vectors. If v∗

i = 1 − vi and A∗ is the matrix with column vectors
v∗

1 , . . . , v∗q , then the system x ≥ 0;xA ≥ 1 has the integer rounding property if
and only if the system x ≥ 0;xA∗ ≤ 1 has the integer rounding property.

Proof: Consider Q = {x|x ≥ 0;xA ≥ 1} and P ∗ = {x|x ≥ 0;xA∗ ≤ 1}.
Let w∗

1 , . . . , w∗

s be the set of all α ∈ Nn such that α ≤ v∗

i for some i. Then,
using Lemmas 2.7 and 2.1, we obtain that the blocking polyhedron of Q and the
antiblocking polyhedron of P ∗ are given by

B(Q) = Rn
+ + conv(v1, . . . , vq) and T (P ∗) = conv(w∗

1 , . . . , w∗

s)

respectively.
⇒) By Theorem 2.4 it suffices to show that T (P ∗) has the integer decompo-

sition property and all maximal integer vectors of T (P ∗) are columns of A∗. Let
b be an integer and let a be an integer vector in bT (P ∗). Then we can write

a = b(λ1w
∗

1 + · · · + λsw
∗

s), (
∑

i λi = 1;λi ≥ 0).

For each 1 ≤ i ≤ s there is v∗

ji
in {v∗

1 , . . . , v∗q} such that w∗

i ≤ v∗

ji
. Thus for each

i we can write 1 − w∗

i = vji
+ δi, where δi ∈ Nn. Therefore

1 − a/b = λ1(vj1 + δ1) + · · · + λs(vjs
+ δs).

This means that 1−a/b ∈ B(Q), i.e., b1−a is an integer vector in bB(Q). Hence
by Theorem 2.8 we can write b1 − a = α1 + · · · + αb for some α1, . . . , αb integer
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vectors in B(Q), and for each αi there is vki
in {v1, . . . , vq} such that vki

≤ αi.
Thus αi = vki

+ ǫi for some ǫi ∈ Nn and consequently:

a = (1 − vk1
) + · · · + (1 − vkb

) − c = v∗

k1
+ · · · + v∗kb

− c,

where c = (c1, . . . , cn) ∈ Nn. Notice that v∗

k1
+ · · · + v∗kb

≥ c because a ≥ 0. If
c1 ≥ 1, then the first entry of v∗

ki
is non-zero for some i and we can write

a = v∗

k1
+ · · · + v∗ki−1

+ (v∗

ki
− e1) + v∗

ki+1
+ · · · + v∗kb

− (c − e1)

Since v∗

ki
− e1 is again in {w∗

1 , . . . , w∗

s}, we can apply this argument recursively
to obtain that a is the sum of b integer vectors in {w∗

1 , . . . , w∗

s}. This proves
that T (P ∗) has the integer decomposition property. Let a be a maximal integer
vector of T (P ∗). Since the vectors w∗

1 , . . . , w∗

s have entries in {0, 1}, we get
T (P ∗)∩Zn = {w∗

1 , . . . , w∗

s}. Then a = w∗

i for some i. As w∗

i ≤ v∗

j for some j, we
conclude that a = v∗

j , i.e., a is a column of A∗, as required.
⇐) According to [8] the system x ≥ 0;xA ≥ 1 has the integer rounding

property if and only if R[It] is normal. Thus by Proposition 2.9 we need only
show that the set Γ = {−e1, . . . ,−en, (v∗

1 , 1), . . . , (v∗

q , 1)} is a Hilbert basis. Let
(a, b) be an integral vector in R+Γ, with a ∈ Zn and b ∈ Z. Then we can write

(a, b) = µ1(−e1) + · · · + µn(−en) + λ1(v
∗

1 , 1) + · · · + λq(v
∗

q , 1),

where µi ≥ 0, λj ≥ 0 for all i, j. Hence A∗λ ≥ a, where λ = (λi). By hypothesis
the system x ≥ 0;xA∗ ≤ 1 has the integer rounding property. Then one has

b ≥ ⌈min{〈y,1〉| y ≥ 0; A∗y ≥ a}⌉ = min{〈y,1〉|A∗y ≥ a; y ∈ Nq} = 〈y0,1〉

for some y0 = (yi) ∈ Nq such that |y0| = 〈y0,1〉 ≤ b and a ≤ A∗y0. Then

a = y1v
∗

1 + · · · + yqv
∗

q − δ1e1 − · · · − δnen,

where δ1, . . . , δn are in N. Hence we can write

(a, b) = y1(v
∗

1 , 1) + · · · + yq−1(v
∗

q−1, 1) + (yq + b − |y0|)(v
∗

q , 1) − (b − |y0|)v
∗

q − δ,

where δ = (δi). As the entries of A∗ are in N, the vector −v∗

q can be written
as a non-negative integer combination of −e1, . . . ,−en. Thus (a, b) ∈ NΓ. This
proves that Γ is a Hilbert basis.

We come to one of the main result of this section. It establishes a duality for
monomial subrings.

Theorem 2.12. Let A be the incidence matrix of a clutter, let v1, . . . , vq be its
column vectors and let v∗

i = 1 − vi. If w∗

1 , . . . , w∗

s is the set of all α ∈ Nn such
that α ≤ v∗

i for some i, then the following conditions are equivalent:
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(a) R[It] is normal, where I = (xv1 , . . . , xvq ).

(b) S∗ = K[xw∗

1 t, . . . , xw∗

s t] is normal.

(c) {−e1, . . . ,−en, (v∗

1 , 1), . . . , (v∗

q , 1)} is a Hilbert basis.

(d) x ≥ 0;xA ≥ 1 has the integer rounding property.

(e) x ≥ 0;xA∗ ≤ 1 has the integer rounding property.

Proof: (a) ⇔ (c): This was shown in Proposition 2.9. (a) ⇔ (d): This is one of
the main results of [8] and is valid for arbitrary monomial ideals. (b) ⇔ (e): This
was shown in Theorem 2.5. (d) ⇔ (e): This follows from Theorem 2.11.

To illustrate the usefulness of this duality, below we show various results that
follow from there.

Definition 2.13. Let C be a clutter on the vertex set X = {x1, . . . , xn}. The
edge ideal of C, denoted by I(C), is the ideal of R generated by all monomials
xe =

∏

xi∈e xi such that e is an edge of C. The dual I∗ of an edge ideal I is the
ideal of R generated by all monomials x1 · · ·xn/xe such that e is an edge of C.

Corollary 2.14. ([34, Theorem 2.10]) Let C be a clutter and let A be its incidence
matrix. If P = {x|x ≥ 0;xA ≤ 1} is an integral polytope and I = I(C), then

(i) R[I∗t] is normal.

(ii) S = K[xw1t, . . . , xwr t] is normal.

Proof: Since P has only integral vertices, by a result of Lovász [21] the system
x ≥ 0;xA ≤ 1 is totally dual integral, i.e., the minimum in the LP-duality
equation

max{〈a, x〉|x ≥ 0;xA ≤ 1} = min{〈y,1〉| y ≥ 0;Ay ≥ a} (2.8)

has an integral optimum solution y for each integral vector a with finite minimum.
In particular the system x ≥ 0;xA ≤ 1 satisfies the integer rounding property.
Therefore R[I∗t] and K[xw1t, . . . , xwr t] are normal by Theorem 2.12.

This result is related to the theory of perfect graphs. Indeed if P is integral,
the w′

is correspond to the cliques (complete subgraphs) of a perfect graph H
[4, 21], and the v∗

i ’s correspond to the minimal vertex covers of the complement
of H. The normality assertion of part (ii) is well known and it can also be shown
directly using the fact that the system x ≥ 0;xA ≤ 1 is TDI if P is integral,
where TDI stands for Totally Dual Integral (see [24]).



292 Joseph P. Brennan, Luis A. Dupont and Rafael H. Villarreal

Corollary 2.15. Let B1, . . . , Bq be the collection of basis of a matroid M with
vertex set X and let v1, . . . , vq be their characteristic vectors. If A is the matrix
with column vectors v1, . . . , vq, then all systems

x ≥ 0;xA ≥ 1, x ≥ 0;xA∗ ≥ 1, x ≥ 0;xA ≤ 1, x ≥ 0;xA∗ ≤ 1

have the integer rounding property.

Proof: Consider the basis monomial ideal I = (xv1 , . . . , xvq ) of the matroid M .
By [22, Theorem 2.1.1], the collection of basis of the dual matroid M∗ of M is
given by X \ B1, . . . ,X \ Bq. Now, the basis monomial ideal of a matroid is
normal [33, Corollary 3.8], thus the result follows at once from the duality given
in Theorem 2.12.

Corollary 2.16. Let G be a connected graph and let I = I(G) be its edge ideal.
Then R[It] is normal if and only if R[I∗t] is normal.

Proof: By [9] the system x ≥ 0;xA ≥ 1 has the integer rounding property if and
only if the system x ≥ 0;xA ≤ 1 does. Therefore the result follows at once using
Theorem 2.12.

This result is valid even if the graph is not connected but its proof requires to
use the fact that R[It] is normal if and only if the extended Rees algebra R[It, t−1]
is normal and the fact that R[It, t−1] is isomorphic to S = K[xw1 , . . . , xwr ] when I
is the edge ideal of a graph (see [9]). The next example shows that Corollary 2.16
does not extends to arbitrary uniform clutters.

Example 2.17. Consider the clutter C whose incidence matrix A is the transpose
of the matrix:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 1 1 0 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1

0 1 1 0 0 1 1 1 1 1

1 1 0 0 0 1 1 1 1 1

0 1 1 0 1 0 1 1 1 1

1 1 1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1 0 1

1 1 1 1 1 0 1 1 0 0

1 1 1 1 1 1 1 0 0 0

1 1 1 1 0 0 1 1 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Let I = I(C) be the edge ideal of C. Note that all edges of C have 7 vertices.
Using Normaliz [3] it is seen that R[It] is normal and that R[I∗t] is not normal.

Let C be a clutter with vertex set X. A vertex x of C is called isolated if
x does not occur in any edge of C. A subset C ⊂ X is a minimal vertex cover
of C if: (c1) every edge of C contains at least one vertex of C, and (c2) there is
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no proper subset of C with the first property. If C only satisfies condition (c1),
then C is called a vertex cover of C. The Alexander dual of C, denoted by C∨,
is the clutter whose edges are the minimal vertex covers of C. The edge ideal
of C∨, denoted by I(C)∨, is called the Alexander dual of I(C). In combinatorial
optimization the Alexander dual of a clutter is referred to as the blocker of the
clutter [24].

Proposition 2.18. Let G be a graph without isolated vertices and let G′ be its
complement. Then I(G′)∨ = I(G)∗ if and only if G is triangle free.

Proof: ⇒) Let X = {x1, . . . , xn} be the vertex set of G. Assume that G has a
triangle C3 = {x1, x2, x3}, i.e., {xi, xj} are edges of G for 1 ≤ i < j ≤ 3. Clearly
we may assume n ≥ 4. Notice that C ′ = {x4, . . . , xn} is a vertex cover of G′, i.e.,
x4 · · ·xn belongs to I(G′)∨ and consequently it belongs to I(G)∗, a contradiction
because I(G)∗ is generated by monomials of degree n − 2.

⇐) Let xa = x1 · · ·xr be a minimal generator of I(G′)∨. Then C = {x1, . . . , xr}

is a minimal vertex cover of G′. Hence X \C is a maximal complete subgraph of
G. Thus by hypothesis X \ C is an edge of G, i.e., xa ∈ I(G)∗. This proves the
inclusion I(G′)∨ ⊂ I(G)∗. Conversely, let xa be a minimal generator of I(G)∗.
There is an edge {x1, x2} of G such that xa = x3 · · ·xn. Every edge of G′ must
intersect C = {x3, . . . , xn}, i.e., xa ∈ I(G′)∨.

This formula applies for instance if G is a bipartite graph.

Corollary 2.19. Let G be a free triangle graph without isolated vertices. Then
R[I(G)t] is normal if and only if R[I(G′)∨t] is normal.

Proof: It follows directly from Corollary 2.16 and Proposition 2.18.

In [34] it is shown that the Alexander dual of the edge ideal of a perfect
graph is always normal (cf. Corollary 2.14(i)). To the best of our knowledge the
following is the first example of an edge ideal of a graph whose Alexander dual
is not normal.

Example 2.20. Let G be the graph consisting of two vertex disjoint odd cycles
of length 5 and let G′ be its complement. According to [27] the Rees algebra of
I(G) is not normal. Thus R[I(G′)∨t] is not normal by Corollary 2.19.

Definition 2.21. A clutter C satisfies the max-flow min-cut (MFMC) property
if both sides of the LP-duality equation

min{〈a, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ a} (2.9)

have integral optimum solutions x and y for each non-negative integral vector a.
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Corollary 2.22. ([17, Theorem 3.4]) Let A be the incidence matrix of a clutter C
and let I = I(C) be its edge ideal. Then C satisfies the max-flow min-cut property
if and only if Q(A) is integral and R[It] is normal.

Proof: Notice that if C has the max-flow min-cut property, then Q(A) is integral
[23, Corollary 22.1c]. Therefore the result follows directly from Eqs. (2.7), (2.9),
and Theorem 2.12.

We now turn our attention to the integer rounding property of systems of the
form xA ≤ 1.

Definition 2.23. Let A be a matrix with entries in N. The system xA ≤ 1 is
said to have the integer rounding property if

⌈min{〈y,1〉| y ≥ 0; Ay = a}⌉ = min{〈y,1〉|Ay = a; y ∈ Nq}

for each integral vector a for which min{〈y,1〉| y ≥ 0; Ay = a} is finite.

The next result is just a reinterpretation of an unpublished result of Giles
and Orlin [23, Theorem 22.18] that characterizes the integer rounding property
in terms of Hilbert bases.

Proposition 2.24. Let v1, . . . , vq be the column vectors of a non-negative integer
matrix A and let A(P ) be the Ehrhart ring of P = conv(0, v1, . . . , vq). Then the
system xA ≤ 1 has the integer rounding property if and only if

K[xv1t, . . . , xvq t, t] = A(P ).

Proof: By [23, Theorem 22.18], we have that the system xA ≤ 1 has the integer
rounding property if and only if the set B = {(v1, 1), . . . , (vq, 1), (0, 1)} is a Hilbert
basis. Thus the proposition follows readily by noticing the equality

A(P ) = K[{xatb|(a, b) ∈ R+B ∩ Zn+1}]

and the inclusion K[xv1t, . . . , xvq t, t] ⊂ A(P ).

Theorem 2.25. Let A = {v1, . . . , vq} be the set of column vectors of a matrix A
with entries in N. If the system xA ≤ 1 has the integer rounding property, then

(a) K[F ] is normal, where F = {xv1 , . . . , xvq}, and

(b) Zn/ZA is a torsion-free group.

The converse holds if |vi| = d for all i.
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Proof: For use below we set B = {(v1, 1), . . . , (vq, 1), (0, 1)}. First we prove (a).

Let xa ∈ K[F ]. Then a ∈ ZA and we can write

a = λ1v1 + · · · + λqvq,

for some λ1, . . . , λq in R+. Hence

(a, ⌈
∑

i λi⌉) = λ1(v1, 1) + · · · + λq(vq, 1) + δ(0, 1),

where δ ≥ 0. Therefore by Proposition 2.24, there are λ′

1, . . . λ
′

q ∈ N and δ′ ∈ N

such that
(a, ⌈

∑

i λi⌉) = λ′

1(v1, 1) + · · · + λ′

q(vq, 1) + δ′(0, 1),

Thus xa ∈ K[F ], as required. Next we show (b). From Proposition 2.24, we get

K[xv1t, . . . , xvq t, t] = A(P ).

Hence using [10, Theorem 3.9] we obtain that the group M = Zn+1/ZB is torsion
free. Let a be an element of T (Zn/ZA), the torsion subgroup of Zn/ZA. Thus
there is a positive integer s so that

sa = λ1v1 + · · · + λqvq

for some λ1, . . . , λq in Z. From the equality

s(a, |a|) = λ1(v1, 1) + · · · + λq(vq, 1) + (s|a| − λ1 − · · · − λq)(0, 1)

we obtain that the image of (a, |a|) in M , denoted by (a, |a|), is a torsion element,
i.e., (a, |a|) ∈ T (M) = (0). Hence it is readily seen that a ∈ ZA, i.e., a = 0.
Altogether we have T (Zn/ZA) = (0).

Conversely assume that |vi| = d for all i and that (a) and (b) hold. We need
only show that B is a Hilbert basis. Let (a, b) be an integral vector in R+B, where
a ∈ Nn and b ∈ N. Then we can write

(a, b) = λ1(v1, 1) + · · · + λq(vq, 1) + µ(0, 1), (2.10)

for some λ1, . . . , λq, µ in Q+. Hence using this equality together with (b) gives

that a is in R+A ∩ ZA. Hence xa ∈ K[F ] = K[F ], i.e., a ∈ NA. Then we can
write

a = η1v1 + · · · + ηqvq

for some η1, . . . , ηq in Nn. Since |vi| = d for all i, one has
∑

i λi =
∑

i ηi.
Therefore using Eq. (2.10), we get µ ∈ N. Consequently from the equality

(a, b) = η1(v1, 1) + · · · + ηq(vq, 1) + µ(0, 1),

we conclude that (a, b) ∈ NB. This proves that B is a Hilbert basis.
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Corollary 2.26. Let A be the incidence matrix of a connected graph G. Then
the system xA ≤ 1 has the integer rounding property if and only if G is a bipartite
graph.

Proof: ⇒) Let A = {v1, . . . , vq} be the set of columns of A. If G is not bipartite,
then according to [32, Corollary 3.4] one has Zn/ZA ≃ Z2, a contradiction to
Theorem 2.25(b).

⇐) By [32, Theorem 2.15, Corollary 3.4] we get that the ring K[xv1 , . . . , xvq ] is
normal and that Zn/ZA ≃ Z. Thus by Theorem 2.25 the system xA ≤ 1 has the
integer rounding property, as required. This part of the proof also follows directly
from the fact that the incidence matrix of a bipartite graph is totally unimodular.
Indeed, since A is totally unimodular, both problems of the LP-duality equation

max{〈a, x〉|xA ≤ 1} = min{〈y,1〉| y ≥ 0;Ay = a}

have integral optimum solutions for each integral vector a for which the minimum
is finite, see [23, Corollary 19.1a]. Thus the system xA ≤ 1 has the integer
rounding property.

Corollary 2.27. Let A be the incidence matrix of a clutter C. If C is uniform
and has the max-flow min-cut property, then the system xA ≤ 1 has the integer
rounding property.

Proof: Since all edges of C have the same size, it suffices to observe that con-
ditions (a) and (b) of Theorem 2.25 are satisfied because of [7, Theorem 3.6].

3 The canonical module and the a-invariant

Let R = K[x1, . . . , xn] be a polynomial ring over an arbitrary field K and let
K[F ] = K[xv1 , . . . , xvq ] be a homogeneous monomial subring, i.e., there exists
0 6= x0 ∈ Qn satisfying 〈x0, vi〉 = 1 for all i. Then K[F ] is a standard graded
K-algebra with the grading induced by declaring that a monomial xa ∈ K[F ] has
degree i if and only if 〈a, x0〉 = i. Recall that the a-invariant of K[F ], denoted
by a(K[F ]), is the degree as a rational function of the Hilbert series of K[F ], see
for instance [31, p. 99]. Let H and ϕ be the Hilbert function and the Hilbert
polynomial of K[F ] respectively. The index of regularity of K[F ], denoted by
reg(K[F ]), is the least positive integer such that H(i) = ϕ(i) for i ≥ reg(K[F ]).
The a-invariant plays a fundamental role in algebra and geometry because one
has: reg(K[F ]) = 0 if a(K[F ]) < 0 and reg(K[F ]) = a(K[F ]) + 1 otherwise [31,
Corollary 4.1.12].

If K[F ] is Cohen-Macaulay and ωK[F ] is the canonical module of K[F ], then

a(K[F ]) = −min{ i | (ωK[F ])i 6= 0}, (3.1)
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see [2, p. 141] and [31, Proposition 4.2.3]. This formula applies if K[F ] is normal
because normal monomial subrings are Cohen-Macaulay [19]. If K[F ] is normal,
then by a formula of Danilov and Stanley (see [2, Theorem 6.3.5] and [6]) the
canonical module of K[F ] is the ideal given by

ωK[F ] = ({xa| a ∈ NA ∩ (R+A)o}), (3.2)

where A = {v1, . . . , vq} and (R+A)o is the interior of R+A relative to aff(R+A),
the affine hull of R+A.

The dual cone of R+A is the polyhedral cone given by

(R+A)∗ = {x | 〈x, y〉 ≥ 0; ∀ y ∈ R+A}.

A set H ⊂ Rn \ {0} is called an integral basis of (R+A)∗ if (R+A)∗ = R+H and
H ⊂ Zn. Let 0 6= a ∈ Rn. In what follows H+

a denotes the closed halfspace
H+

a = {x| 〈x, a〉 ≥ 0} and Ha stands for the hyperplane through the origin with
normal vector a.

The next result gives a general technique to compute the canonical module
and the a-invariant of a wide class of monomial subrings. Another technique is
given in [28]. In Section 4 we give some more precise expressions for the canonical
module and the a-invariant of special families of monomial subrings arising from
integer rounding properties.

Theorem 3.1. Let c1, . . . , cr be an integral basis of (R+A)∗ and let b = (bi) be
the {0,−1}-vector given by bi = 0 if R+A ⊂ Hci

and bi = −1 if R+A 6⊂ Hci
. If

NA = Zn ∩ R+A and B is the matrix with column vectors −c1, . . . ,−cr, then

(a) ωK[F ] = ({xa| a ∈ Zn ∩ {x|xB ≤ b}).

(b) a(K[F ]) = −min {〈x0, x〉| x ∈ Zn ∩ {x|xB ≤ b}}.

Proof: Let H = {c1, . . . , cr}. By duality [23, Corollary 7.1a], we have the equa-
lity

R+A = H+
c1

∩ · · · ∩ H+
cr

. (3.3)

Observe that R+A ∩ Hci
is a proper face if bi = −1 and it is an improper face

otherwise. From Eq. (3.3) we get that each facet of R+A has the form R+A∩Hci

for some i. The relative interior of the cone R+A is the union of its facets. Hence,
using that H is an integral basis, we obtain the equality

Zn ∩ (R+A)o = Zn ∩ {x|xB ≤ b}. (3.4)

Now, part (a) follows readily from Eqs. (3.2) and (3.4). Part (b) follows from
Eq. (3.1) and part (a).

Next we illustrate how to determine the canonical module and the a-invariant
using Theorem 3.1.
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Example 3.2. Let F = {x1, x2, x3, x4, x1x2x5, x2x3x5, x3x4x5, x1x4x5} and let
A be the set of exponent vectors of the monomials in F . Notice that A is a Hilbert
basis and 〈x0, v〉 = 1 for v ∈ A, where x0 = (1, 1, 1, 1,−1). An integral basis for
(R+A)∗ is given by

{e1, e2, e3, e4, e5, (0, 1, 0, 1,−1), (1, 0, 1, 0,−1)}.

Then it is easy to verify that ωK[F ] is generated by the set of all monomials xa

such that a = (ai) is in the polyhedron Q defined by the system:

ai ≥ 1∀ i; a1 + a3 − a5 ≥ 1; a2 + a4 − a5 ≥ 1.

The only vertex of the polyhedron Q is v0 = (1, 1, 1, 1, 1). Thus the a-invariant
of K[F ] is equal to −〈x0, v0〉 = −3.

4 Canonical modules and integer rounding properties

In this section we give a description of the canonical module and the a-invariant
for subrings arising from systems with the integer rounding property.

Let A be a matrix of order n × q with entries in N such that A has non-zero
rows and non-zero columns. Let v1, . . . , vq be the columns of A. For use below
consider the set w1, . . . , wr of all α ∈ Nn such that α ≤ vi for some i. Let
R = K[x1, . . . , xn] be a polynomial ring over a field K and let

S = K[xw1t, . . . , xwr t] ⊂ R[t]

be the subring of R[t] generated by xw1t, . . . , xwr t, where t is a new variable. As
(wi, 1) lies in the hyperplane xn+1 = 1 for all i, S is a standard K-algebra. Thus
a monomial xatb in S has degree b. In what follows we assume that S has this
grading. If S is normal, then according to Eq. (3.2) the canonical module of S is
the ideal given by

ωS = ({xatb| (a, b) ∈ NB ∩ (R+B)o}), (4.1)

where B = {(w1, 1), . . . , (wr, 1)} and (R+B)o is the interior of R+B relative to
aff(R+B), the affine hull of R+B. In our case aff(R+B) = Rn+1.

Let ℓ0, ℓ1, . . . , ℓm be the vertices of P = {x|x ≥ 0;xA ≤ 1}, where ℓ0 = 0,
and let ℓ1, . . . , ℓp be the set of all maximal elements of ℓ0, ℓ1, . . . , ℓm (maximal
with respect to ≤).

Lemma 4.1. For each 1 ≤ i ≤ p there is a unique positive integer di such that
the non-zero entries of (−diℓi, di) are relatively prime.

Proof: If the non-zero rational entries of ℓi are written in lowest terms, then di

is the least common multiple of the denominators.
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Notation In what follows {ℓ1, . . . , ℓp} is the set of maximal elements of {ℓ0, . . . , ℓm}
and d1, . . . , dp are the unique positive integers in Lemma 4.1.

The next result complements a result of [9].

Theorem 4.2. If the system x ≥ 0;xA ≤ 1 has the integer rounding property,
then the subring S = K[xw1t, . . . , xwr t] is normal, the canonical module of S is
given by

ωS =

({

xatb
∣

∣ (a, b)

(

−d1ℓ1 · · · −dpℓp e1 · · · en

d1 · · · dp 0 · · · 0

)

≥ 1

})

, (4.2)

and the a-invariant of S is equal to −maxi{⌈1/di + |ℓi|⌉}. Here |ℓi| = 〈ℓi,1〉.

Proof: Note that in Eq. (4.2) we regard (−diℓi, di) and ej as column vectors for
all i, j. The normality of S follows from Theorem 2.5. Recall that we have the
following duality (see Section 2):

P = {x|x ≥ 0; 〈x,wi〉 ≤ 1∀i} = conv(ℓ0, ℓ1, . . . , ℓm),

conv(w1, . . . , wr) = {x|x ≥ 0; 〈x, ℓi〉 ≤ 1∀i} = T (P ), (4.3)

where {ℓ0, ℓ1, . . . , ℓm} ⊂ Qn
+ is the set of vertices of P and ℓ0 = 0. Therefore

using Eq. (4.3) and the maximality of ℓ1, . . . , ℓp we obtain

conv(w1, . . . , wr) = {x|x ≥ 0; 〈x, ℓi〉 ≤ 1, ∀ i = 1, . . . , p}. (4.4)

We set B = {(w1, 1), . . . , (wr, 1)}. Note that ZB = Zn+1. From Eq. (4.4) it is
seen that

R+B = H+
e1

∩ · · · ∩ H+
en

∩ H+
(−d1ℓ1,d1)

∩ · · · ∩ H+
(−dpℓp,dp). (4.5)

Here H+
a denotes the closed halfspace H+

a = {x| 〈x, a〉 ≥ 0} and Ha stands for
the hyperplane through the origin with normal vector a. Notice that

He1
∩ R+B, . . . ,Hen

∩ R+B,H(−d1ℓ1,d1) ∩ R+B, . . . ,H(−dpℓp,dp) ∩ R+B

are proper faces of R+B. Hence from Eq. (4.5) we get that a vector (a, b), with
a ∈ Zn, b ∈ Z, is in the relative interior of R+B if and only if the entries of a are
positive and 〈(a, b), (−diℓi, di)〉 ≥ 1 for all i. Thus the required expression for ωS ,
i.e., Eq. (4.2), follows using the normality of S and the Danilov-Stanley formula
given in Eq. (4.1).

It remains to prove the formula for a(S), the a-invariant of S. Consider the
vector (1, b0), where b0 = maxi{⌈1/di + |ℓi|⌉}. Using Eq. (4.2), it is not hard to
see (by direct substitution of (1, b0)), that the monomial x1tb0 is in ωS . Thus
from Eq. (3.1) we get a(S) ≥ −b0. Conversely if the monomial xatb is in ωS , then
again from Eq. (4.2) we get 〈(−diℓi, di), (a, b)〉 ≥ 1 for all i and ai ≥ 1 for all i,
where a = (ai). Hence

bdi ≥ 1 + di〈a, ℓi〉 ≥ 1 + di〈1, ℓi〉 = 1 + di|ℓi|.
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Since b is an integer we obtain b ≥ ⌈1/di + |ℓi|⌉ for all i. Therefore b ≥ b0, i.e.,
deg(xatb) = b ≥ b0. As xatb was an arbitrary monomial in ωS , by the formula
for the a-invariant of S given in Eq. (3.1) we obtain that a(S) ≤ −b0. Altogether
one has a(S) = −b0, as required.

A standard graded K-algebra S is called Gorenstein if S is Cohen-Macaulay
and ωS is a principal ideal.

Theorem 4.3. Assume that the system x ≥ 0; xA ≤ 1 has the integer rounding
property. If S = K[xw1t, . . . , xwr t] is Gorenstein and c0 = max{|ℓi| : 1 ≤ i ≤ p}
is an integer, then |ℓk| = c0 for each 1 ≤ k ≤ p such that ℓk has integer entries.

Proof: We proceed by contradiction. Assume that |ℓk| < c0 for some integer
1 ≤ k ≤ p such that ℓk is integral. We may assume that ℓk = (1, . . . , 1, 0, . . . , 0)
and |ℓk| = s. From Eq. (4.5) it follows that the monomial xℓkts−1 cannot be in S
because (ℓk, s − 1) does not belong to H+

(−dkℓk,dk). Consider the monomial xatb,

where a = ℓk + 1, b = b0 + s − 1 and b0 = −a(S). We claim that the monomial
xatb is in ωS . By Theorem 4.2 it suffices to show that 〈(a, b), (−djℓj , dj)〉 ≥ 1
for 1 ≤ j ≤ p. Thus we need only show that 〈(a, b), (−ℓj , 1)〉 > 0 for 1 ≤ j ≤ p.
From the proof of Theorem 4.2, it is seen that −a(S) = maxi{⌊|ℓi|⌋} + 1. Hence
we get b0 = c0 + 1. One has the following equalities

〈(a, b), (−ℓj , 1)〉 = −|ℓj | − 〈ℓk, ℓj〉 + b0 + s − 1 = −|ℓj | − 〈ℓk, ℓj〉 + c0 + s.

Set ℓj = (ℓj1 , . . . , ℓjn). From Eq. (4.5) we get that the entries of each ℓj are less
than or equal to 1. Case (I): If ℓji < 1 for some 1 ≤ i ≤ s, then s − 〈ℓk, ℓj〉 > 0
and c0 ≥ |ℓj |. Case (II): ℓji = 1 for 1 ≤ i ≤ s. Then ℓj ≥ ℓk. Thus by the
maximality of ℓk we obtain ℓj = ℓk. In both cases we obtain 〈(a, b), (−ℓj , 1)〉 > 0,
as required. Hence the monomial xatb is in ωS . Since S is Gorenstein and ωS is
generated by x1tb0 , we obtain that xatb is a multiple of x1tb0 , i.e., xℓkts−1 must
be in S, a contradiction.

Theorem 4.4. Assume that the system x ≥ 0;xA ≤ 1 has the integer rounding
property. If S = K[xw1t, . . . , xwr t] and −a(S) = 1/di + |ℓi| for i = 1, . . . , p, then
S is Gorenstein.

Proof: We set b0 = −a(S) and B = {(w1, 1), . . . , (wr, 1)}. The ring S is normal
by Theorem 2.5. Since the monomial x1tb0 = x1 · · ·xntb0 is in ωS , we need only
show that ωS = (x1tb0). Take xatb ∈ ωS . It suffices to prove that xa−1tb−b0 is
in S. Using Theorem 2.5, one has R+B ∩ Zn+1 = NB. Thus we need only show
that the vector (a − 1, b − b0) is in R+B. From Eq. (4.5), the proof reduces to
show that the vector (a − 1, b − b0) is in H+

(−ℓi,1)
for i = 1, . . . , p.

As (a, b) ∈ ωS , from the description of ωS given in Theorem 4.2 we get

〈(a, b), (−diℓi, di)〉 = −〈a, diℓi〉 + bdi ≥ 1 =⇒ −〈a, ℓi〉 ≥ −b + 1/di
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for i = 1, . . . , p. Therefore

〈(a − 1, b − b0), (−ℓi, 1)〉 = −〈a, ℓi〉 + |ℓi| + b − b0 ≥ −b + 1/di + |ℓi| + b − b0 = 0

for all i, as required.

Corollary 4.5. If P = {x|x ≥ 0;xA ≤ 1} is an integral polytope, then the
monomial subring S = K[xw1t, . . . , xwr t] is Gorenstein if and only if a(S) =
−(|ℓi| + 1) for i = 1, . . . , p.

Proof: Notice that if P is integral, then ℓi has entries in {0, 1} for 1 ≤ i ≤ p and
consequently di = 1 for 1 ≤ i ≤ p. Thus the result follows from Theorems 4.3
and 4.4.

Example 4.6. Let G be a pentagon with vertex set X = {x1, . . . , x5}, let A be
the incidence matrix of G and let

S = K[t, x1t, . . . , x5t, x1x2t, x2x3t, x3x4t, x4x5t, x1x5t].

The system x ≥ 0;xA ≤ 1 has the integer rounding property and the vertex set
of P = {x|x ≥ 0;xA ≤ 1} is:

vert(P ) = {0,1/2, e3 + e5, e2 + e5, e2 + e4, e1 + e4, e1 + e3, e1, e2, e3, e4, e5}.

The maximal elements of vert(P ) are

ℓ1 = 1/2, ℓ2 = e3 + e5, ℓ3 = e2 + e5, ℓ4 = e2 + e4, ℓ5 = e1 + e4, ℓ6 = e1 + e3,

d1 = 2 and di = 1 for 2 ≤ i ≤ 6. Notice that 1/di + |ℓi| = 3 for i = 1, . . . , 6.
Thus by Theorems 4.2 and 4.4, the ring S is Gorenstein and a(S) = −3.

Problem 4.7. If A is the incidence matrix of a connected graph and the sys-
tem x ≥ 0; xA ≤ 1 has the integer rounding property, then the subring S =
K[xw1t, . . . , xwr t] is Gorenstein if and only if −a(S) = 1/di + |ℓi| for i = 1, . . . , p.

Note that the answer to this problem is positive if A is the incidence matrix
of a bipartite graph because in this case P is an integral polytope and we may
apply Corollary 4.5. If A is the incidence matrix of a connected non-bipartite
graph G, E. Reyes has shown that G is unmixed if S is Gorenstein. If A is the
incidence matrix of a graph, then it is seen that di = 1 or di = 1/2 for each i.

Subrings associated to the system xA ≤ 1

Let A be a matrix with entries in N such that the system xA ≤ 1 has integer
rounding property. As before we assume that the rows and columns of A are
different from zero and that v1, . . . , vq are the columns of A. In what follows we
assume that |vi| = d for all i.

The following lemma is not hard to show.
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Lemma 4.8. If |vi| = d for all i. Then there are isomorphisms

K[xv1t, . . . , xvq t, t] ≃ K[xv1t, . . . , xvq t][T ] and

K[xv1t, . . . , xvq t] ≃ K[xv1 , . . . , xvq ]

induced by xvit 7→ xvit, t 7→ T and xvit 7→ xvi respectively, where T is a new
variable.

Let S be a homogeneous monomial subring and let PS be its toric ideal. Recall
that S is called a complete intersection if PS is a complete intersection, i.e., PS

can be generated by ht(PS) binomials, where ht(PS) is the height of PS . Let c
be a cycle of a graph G. A chord of c is any edge of G joining two non adjacent
vertices of c. A cycle without chords is called primitive.

Proposition 4.9. Let G be a connected graph with n vertices and q edges and
let A be its incidence matrix. If the system xA ≤ 1 has the integer rounding
property, then K[xv1t, . . . , xvq t, t] is a complete intersection if and only if G is
bipartite and the number of primitive cycles of G is equal to q − n + 1.

Proof: ⇒) By Corollary 2.26 the graph G is bipartite. From Lemma 4.8 it
follows that K[xv1t, . . . , xvq t, t] is a complete intersection if and only if K[G] =
K[xv1 , . . . , xvq ] is a complete intersection. Therefore by [25] we get that K[G] is
a complete intersection if and only if the number of primitive cycles of G is equal
to q − n + 1.

⇐) By [25] the ring K[G] is a complete intersection. Hence K[xv1t, . . . , xvq t, t]
is a complete intersection by Lemma 4.8.
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