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Abstract

The goal of this paper is to prove existence results for some eigenvalue

problems in which is involved a class of nonlinear operators which perturb

the Laplace operator. Our proofs rely essentially on the Banach fixed point

theorem and on a minimization technique.
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1 Introduction and main results

The study of eigenvalue problems of various differential operators captured an
enormous interest in the last decades. A large variety of papers pointed out dif-
ferent phenomena which can occur on the spectrum of certain differential opera-
tors. We just remember the recent advances in [3, 4, 5, 7, 8, 9, 10, 11, 12, 15, 16].
The goal of this paper is to point out certain results on an eigenvalue problem
in which we perturb the Laplace operator in a sense that will be described later.
More exactly, in this paper we are concerned with the study of an eigenvalue
problem of the type

{

−div(A(∇u)) = λu, for x ∈ Ω
u = 0, for x ∈ ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary, λ > 0
and A : RN → RN is a function which represents a perturbation of the Laplace
operator that will be specified later in the paper.

In the case when A(ξ) = ξ for all ξ ∈ RN problem (1) goes back to the
classical problem

{

−∆u = λu, for x ∈ Ω
u = 0, for x ∈ ∂Ω.

(2)
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A real number λ is called an eigenvalue of problem (2) if there exists u ∈ H1
0 (Ω)\

{0} such that
∫

Ω

∇u∇ϕ dx = λ

∫

Ω

uϕ dx, ∀ ϕ ∈ H1
0 (Ω).

The function u is called an eigenfunction associated with the eigenvalue λ.

It is known (see e.g. Brezis [1], Theorem IX.31) that for problem (2) there
exists a nondecreasing sequence of positive eigenvalues {λn} such that λn → ∞
as n → ∞. More exactly, the spectrum of the Laplace operator is discrete on
bounded domains with smooth boundary. Furthermore, λ1 is the minimum of
the Rayleigh quotient

λ1 = min
u∈H1

0
(Ω)\{0}

∫

Ω

|∇u|2 dx

∫

Ω

u2 dx

,

and is called the principal frequency. The associated eigenfunction u describes
the shape of a membrane when it vibrates emitting its gravest tone, cf. Polya and
Szego [13]. It is known that λ1 is simple, i.e. all the associated eigenfunctions u

are merely constant multiples of each other (see e.g. Gilbarg and Trudinger [2]).
Moreover, the first eigenfunction never changes signs in Ω. On the other hand,
higher eigenvalues are not simple (see e.g. Polya and Szego [13]).

This time we study problem (1) when div(A(∇u)) is a perturbation of the
Laplace operator. Thus, throughout this paper we assume that A is of the type

A(ξ) = (A1(ξ), ...,AN (ξ)), ∀ ξ = (ξ1, ..., ξN ) ∈ RN ,

with A1, ...,AN : RN → R and for any i ∈ {1, ..., N} either Ai(ξ) = cos(ξi) + 2ξi

or Ai(ξ) = sin(ξi) + 2ξi, for all ξ = (ξ1, ..., ξN ) ∈ RN .

Definition 1. We say that λ ∈ R is an eigenvalue of problem (1) if there exists
u ∈ H1

0 (Ω) \ {0} such that

∫

Ω

A(∇u)∇ϕ dx = λ

∫

Ω

uϕ dx, ∀ ϕ ∈ H1
0 (Ω).

We prove that the operators of the type described above possess a continuous
family of positive eigenvalues in a right neighborhood of the origin excepting the
case when Ai(x) = sin(xi) + 2xi for all i ∈ {1, ..., N} and all x ∈ Ω. However,
even in that case we can prove the existence of at least one positive eigenvalue.
The main results of our study are given by the following theorems:

Theorem 1. Assume that there exists i0 ∈ {1, ..., N} such that Ai0(x) = cos(xi0)+
2xi0 for all x ∈ RN . Then any λ ∈ (0, λ1) is an eigenvalue of problem (1), where
λ1 is the first eigenvalue of the Laplace operator.
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Theorem 2. Assume that for any i ∈ {1, ..., N} we have Ai(x) = sin(xi) + 2xi

for all x ∈ RN . Then there exists at least a positive eigenvalue λ of problem (1),
such that λ ≥ λ1 where λ1 is the first eigenvalue of the Laplace operator.

Theorem 3. Assume the hypotheses of Theorem 1 are fulfilled. Then there exists
at least a positive eigenvalue λ of problem (1), such that λ ≥ λ1 where λ1 is the
first eigenvalue of the Laplace operator.

Throughout this paper we denote by 〈., .〉 the scalar product on the Sobolev
space H1

0 (Ω) and by ‖.‖ the corresponding norm on H1
0 (Ω), i.e.

〈u, v〉 =

∫

Ω

∇u∇v dx, ‖u‖ =

(
∫

Ω

|∇u|2 dx

)1/2

.

We also denote by ‖.‖L2 the norm on the Lebesgue space L2(Ω), i.e.

‖u‖L2 =

(
∫

Ω

u2 dx

)1/2

.

2 Proof of Theorem 1

In order to prove Theorem 1 we use a method borrowed from the proof of a
nonlinear version of the Lax-Milgram Theorem (see Zeidler [18], Section 2.15).
Our proof will use as main tool the Banach fixed point theorem (see Zeidler [18],
Section 1.6).

First, we define the operators a : H1
0 (Ω) × H1

0 (Ω) → R by

a(u, v) =

∫

Ω

A(∇u)∇v dx, ∀ u, v ∈ H1
0 (Ω)

and bλ : H1
0 (Ω) × H1

0 (Ω) → R by

bλ(u, v) = λ

∫

Ω

uv dx, ∀ u, v ∈ H1
0 (Ω).

It is enough to show that for any λ ∈ (0, λ1) there exists u ∈ H1
0 (Ω) such that

a(u, v) = bλ(u, v), ∀ u, v ∈ H1
0 (Ω).

We point out certain properties of the operators a respectively bλ.

Proposition 1. The operator a verifies the following properties:

(i) for any w ∈ H1
0 (Ω) the application v → a(w, v) is linear and continuous on

H1
0 (Ω);

(ii) ‖u − v‖2 ≤ a(u, u − v) − a(v, u − v), for all u, v ∈ H1
0 (Ω);

(iii) |a(u,w) − a(v, w)| ≤ 3 · ‖u − v‖ · ‖w‖, for all u, v ∈ H1
0 (Ω).
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Proof: For any i ∈ {1, ..., N} we set γi(xi) = Ai(x) − 2xi, for all

x = (x1, ..., xN ) ∈ RN .

(i) We fix w ∈ H1
0 (Ω). It is clear that the application v → a(w, v) is linear. On

the other hand, using Hölder’s inequality we have

|a(w, v)| =

∣

∣

∣

∣

∫

Ω

A(∇w)∇v dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

γi

(

∂w

∂xi

)

∂v

∂xi
dx + 2

∫

Ω

∇w∇v dx

∣

∣

∣

∣

∣

≤
N

∑

i=1

∫

Ω

∣

∣

∣

∣

γi

(

∂w

∂xi

)∣

∣

∣

∣

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

dx + 2‖w‖ · ‖v‖

≤
N

∑

i=1

∫

Ω

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

dx + 2‖w‖ · ‖v‖

≤ (c + 2‖w‖)‖v‖

where c is a positive constant. It follows that v → a(w, v) is continuous.

(ii) We have

a(u, u − v) − a(v, u − v)

=

∫

Ω

(A(u) −A(v))∇(u − v) dx

=
N

∑

i=1

∫

Ω

(

γi

(

∂u

∂xi

)

− γi

(

∂v

∂xi

))(

∂u

∂xi
− ∂v

∂xi

)

dx + 2 · ‖u − v‖2.

Using the mean value theorem and taking into account that |γ′

i(y)| ≤ 1 for all
y ∈ R and all i ∈ {1, ..., N} we deduce that

a(u, u − v) − a(v, u − v) =

N
∑

i=1

∫

Ω

γ
′

i(θi)

(

∂u

∂xi
− ∂v

∂xi

)2

dx + 2 · ‖u − v‖2

≥ −‖u − v‖2 + 2 · ‖u − v‖2 = ‖u − v‖2

where θi(x) = µi(x) ∂u
∂xi

(x) + (1 − µi(x)) ∂v
∂xi

(x) for all i ∈ {1, ..., N} and for all
x ∈ Ω with µi(x) ∈ [0, 1] for all i ∈ {1, ..., N} and all x ∈ Ω.
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(iii) Using the same arguments and notations as above we have

|a(u,w) − a(v, w)|

=

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

(

γi

(

∂u

∂xi

)

− γi

(

∂v

∂xi

))

∂w

∂xi
dx + 2

∫

Ω

∇(u − v)∇w dx

∣

∣

∣

∣

∣

≤
N

∑

i=1

∫

Ω

|γ′

i(θi)| ·
∣

∣

∣

∣

∂u

∂xi
− ∂v

∂xi

∣

∣

∣

∣

·
∣

∣

∣

∣

∂w

∂xi

∣

∣

∣

∣

dx + 2

∫

Ω

|∇(u − v)| · |∇w| dx

≤
N

∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi
− ∂v

∂xi

∣

∣

∣

∣

·
∣

∣

∣

∣

∂w

∂xi

∣

∣

∣

∣

dx + 2

∫

Ω

|∇(u − v)| · |∇w| dx

≤ 3 · ‖u − v‖ · ‖w‖.

The proof of Proposition 1 is complete.

Proposition 2. For any λ ∈ (0, λ1) the operator bλ verifies the following pro-
perties:

(i) bλ is bilinear and continuous on H1
0 (Ω) × H1

0 (Ω);

(ii) bλ(u, u) ≥ 0 for all u ∈ H1
0 (Ω);

(iii) there exists M > 0 such that

|bλ(u,w) − bλ(v, w)| ≤ M · ‖u − v‖ · ‖w‖, ∀ u, v, w ∈ H1
0 (Ω).

Proof: (i) It is clear that bλ is a bilinear operator on H1
0 (Ω) × H1

0 (Ω). On the
other hand, Hölder’s inequality and the Sobolev continuous embedding theorem
of H1

0 (Ω) in L2(Ω) imply

|bλ(u, v)| ≤ λ · ‖u‖L2 · ‖v‖L2 ≤ c · ‖u‖ · ‖v‖, ∀ u, v ∈ H1
0 (Ω)

where c is a positive constant. That fact shows that bλ is continuous.

(ii) For any u ∈ H1
0 (Ω) we have bλ(u, u) = λ‖u‖2

L2 ≥ 0.

(iii) Using again Hölder’s inequality and the Sobolev continuous embedding the-
orem of H1

0 (Ω) in L2(Ω) we obtain

|bλ(u,w) − bλ(v, w)| = λ

∣

∣

∣

∣

∫

Ω

(u − v)w dx

∣

∣

∣

∣

≤ λ · ‖u − v‖L2 · ‖w‖L2

≤ M · ‖u − v‖ · ‖w‖, ∀ u, v, w ∈ H1
0 (Ω)

where M is a positive constant. The proof of Proposition 2 is complete. 2

Proof of Theorem 1. Let λ ∈ (0, λ1) be arbitrary but fixed. By Proposi-
tion 1 (i) and the Riesz theorem we deduce that for each u ∈ H1

0 (Ω) there is an
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element called Au ∈ H1
0 (Ω) such that

a(u, v) = 〈Au, v〉 =

∫

Ω

∇Au∇v dx, ∀ v ∈ H1
0 (Ω).

Thus we can define an operator A : H1
0 (Ω) → H1

0 (Ω). By Proposition 1 (ii) and
(iii) it follows that A verifies the properties

‖u − v‖2 ≤ 〈Au, u − v〉 − 〈Av, u − v〉, ∀ u, v ∈ H1
0 (Ω) (3)

i.e. A is strongly monotone, and

|〈Au,w〉 − 〈Av,w〉| ≤ 3 · ‖u − v‖ · ‖w‖, ∀ u, v, w ∈ H1
0 (Ω). (4)

Relation (4) implies

‖Au − Av‖ = sup
‖w‖≤1

|〈Au − Av,w〉| ≤ 3 · ‖u − v‖, ∀ u, v ∈ H1
0 (Ω). (5)

On the other hand, by Proposition 2 (i) and the Riesz theorem we deduce that
for each u ∈ H1

0 (Ω) there is an element called Bλu ∈ H1
0 (Ω) such that

bλ(u, v) = 〈Bλu, v〉 =

∫

Ω

∇Bλu∇v dx, ∀ v ∈ H1
0 (Ω).

In this way we can define an operator Bλ : H1
0 (Ω) → H1

0 (Ω). By Proposition 2
and the variational characterization of λ1 it follows that Bλ is a linear operator
which satisfies the properties:

〈Bλu, u−v〉−〈Bλv, u−v〉 = bλ(u−v, u−v) ≤ λ

λ1
·‖u−v‖2, ∀ u, v ∈ H1

0 (Ω) (6)

and

‖Bλu − Bλv‖ = sup
‖w‖≤1

|〈Bλu − Bλv, w〉| =

= sup
‖w‖≤1

|bλ(u − v, w)| ≤ M · ‖u − v‖, ∀ u, v ∈ H1
0 (Ω). (7)

We define the operator S : H1
0 (Ω) → H1

0 (Ω) by

Su = u − t(Au − Bλu)

where t ∈ (0, 2(1−λ/λ1)
(3+M)2 ). The relations (3), (5), (6) and (7) show that for each
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v1, v2 ∈ H1
0 (Ω) the following inequalities hold true

‖Sv1 − Sv2‖2

= 〈Sv1 − Sv2, Sv1 − Sv2〉
= 〈(v1 − v2) − t(Av1 − Av2) + t(Bλv1 − Bλv2), (v1 − v2) − t(Av1 − Av2) +

t(Bλv1 − Bλv2)〉
= ‖v1 − v2‖2 − 2t〈Av1 − Av2, v1 − v2〉 + 2t〈Bλv1 − Bλv2, v1 − v2〉 −

2t2〈Av1 − Av2, Bλv1 − Bλv2〉 + t2‖Av1 − Av2‖2 + t2‖Bλv1 − Bλv2‖2

≤ ‖v1 − v2‖2 − 2t‖v1 − v2‖2 +

2t
λ

λ1
‖v1 − v2‖2 + 2t2‖Av1 − Av2‖ · ‖Bλv1 − Bλv2‖ +

t2‖Av1 − Av2‖2 + t2‖Bλv1 − Bλv2‖

≤
(

1 − 2t

(

1 − λ

λ1

)

+ 6Mt2 + 9t2 + M2t2
)

· ‖v1 − v2‖2

= α · ‖v1 − v2‖2

where α = 1− 2(1− λ
λ1

)t + (3 + M)2t2 ≥ 0. If t = 0 or t = 2(1−λ/λ1)
(3+M)2 then α = 1.

This implies that
√

α < 1 for all t ∈ (0, 2(1−λ/λ1)
(3+M)2 ).

Therefore,

‖Sv1 − Sv2‖ ≤
√

α · ‖u − v‖, ∀ u, v ∈ H1
0 (Ω)

i.e. S is
√

α-contractive with
√

α < 1. By the Banach fixed point theorem (see
Zeidler [18], Section 1.6) it follows that the problem

u = Su

has a unique solution u ∈ H1
0 (Ω), i.e. the problem

Au = Bλu

has a unique solution u ∈ H1
0 (Ω). It follows that

〈Au,ϕ〉 = 〈Bλu, ϕ〉, ∀ ϕ ∈ H1
0 (Ω)

i.e.
∫

Ω

A(∇u)∇ϕ dx = λ

∫

Ω

uϕ dx, ∀ ϕ ∈ H1
0 (Ω).

Finally we remark that u 6= 0 since Bλ vanishes in the origin while A does not
vanish in the origin. Thus we have proved that any λ ∈ (0, λ1) is an eigenvalue
of problem (1). The proof of Theorem 1 is complete.
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3 Proof of Theorem 2

First, we point out the fact that under the hypotheses of Theorem 2 the conclusion
of Theorem 1 does not hold. Indeed, in that case we have A(0) = 0 and thus the
non-triviality of the solution obtained by applying the Banach fixed point theorem
can not be stated. However, we can prove the existence of a positive eigenvalue of
problem (1) under the hypotheses of Theorem 2 using a minimization technique.
Such techniques are usually used in finding principal eigenvalues (see e.g. Szulkin-
Willem [14]). We remark that the minimization procedure can be also used in
order to prove Theorem 3.

We define the functional I : H1
0 (Ω) → R,

I(u) =

∫

Ω

F (∇u) dx, ∀ u ∈ H1
0 (Ω)

where F : RN → R is the function F (ξ) =
∑N

i=1(− cos(ξi) + ξ2
i ), for all ξ =

(ξ1, ..., ξN ) ∈ RN . It is clear that

∂F

∂xi
(ξ) = sin(ξi) + 2ξi = Ai(ξ), ∀ i ∈ {1, ..., N} and ∀ ξ ∈ RN ,

i.e. ∇F (ξ) = A(ξ) for all ξ ∈ RN . Thus it is easy to remark that I is of class C1

on H1
0 (Ω) with the derivative given by

〈I ′

(u), v〉 =

∫

Ω

A(∇u)∇v dx, ∀ u, v ∈ H1
0 (Ω).

We consider the minimization problem

(P) minimize I(u) under conditions u ∈ H1
0 (Ω) and

∫

Ω
u2 dx = 1.

We point out the fact that problem (P) is well defined. Indeed, for all u ∈
H1

0 (Ω) with
∫

Ω
u2 dx = 1 we have

I(u) =

N
∑

i=1

∫

Ω

− cos

(

∂u

∂xi

)

dx + ‖u‖2 ≥ −N · |Ω| + λ1 > −∞ (8)

where λ1 is the first eigenvalue of the Laplace operator.

Proposition 3. The functional I is weakly lower semicontinuous on H1
0 (Ω).

Proof: Let (un) be a sequence in H1
0 (Ω) such that un converges weakly to u in

H1
0 (Ω). We show that

lim inf
n→∞

I(un) ≥ I(u).

First, we remark that

I(un) − I(u) =

N
∑

i=1

∫

Ω

(

− cos

(

∂un

∂xi

)

−
(

− cos

(

∂u

∂xi

)))

dx + ‖un‖2 − ‖u‖2.
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Applying the mean-value theorem it follows that

I(un) − I(u) =

N
∑

i=1

∫

Ω

sin(w(i)
n )

(

∂un

∂xi
− ∂u

∂xi

)

dx + ‖un‖2 − ‖u‖2 (9)

where w
(i)
n (x) = µ

(i)
n (x)∂un

∂xi

(x) + (1 − µ
(i)
n (x)) ∂u

∂xi

(x) for all n, all i ∈ {1, ..., N}
and all x ∈ Ω with µ

(i)
n (x) ∈ [0, 1] for all n, all i ∈ {1, ..., N} and all x ∈ Ω.

On the other hand, we have

N
∑

i=1

∫

Ω

sin(w(i)
n )

(

∂un

∂xi
− ∂u

∂xi

)

dx

=

N
∑

i=1

∫

Ω

sin

(

µ(i)
n (x)

(

∂un

∂xi
− ∂u

∂xi

)

+
∂u

∂xi

)(

∂un

∂xi
− ∂u

∂xi

)

dx

=
N

∑

i=1

∫

Ω

[

sin

(

µ(i)
n (x)

(

∂un

∂xi
− ∂u

∂xi

)

+
∂u

∂xi

)

− sin

(

∂u

∂xi

)]

·

(

∂un

∂xi
− ∂u

∂xi

)

dx +

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

) (

∂un

∂xi
− ∂u

∂xi

)

dx.

Applying again the mean value theorem we get

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

sin(w(i)
n )

(

∂un

∂xi
− ∂u

∂xi

)

dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

µ(i)
n (x) cos(ξ(i)

n )

(

∂un

∂xi
− ∂u

∂xi

)2

dx+

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

)(

∂un

∂xi
− ∂u

∂xi

)

dx

∣

∣

∣

∣

∣

≤ ‖un − u‖2 +

∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

)(

∂un

∂xi
− ∂u

∂xi

)

dx

∣

∣

∣

∣

∣

.

(10)

Relations (9) and (10) imply
I(un) − I(u)

≥ ‖un‖2 − ‖un − u‖2 − ‖u‖2 −
∣

∣

∣

∣

∣

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

)(

∂un

∂xi
− ∂u

∂xi

)

dx

∣

∣

∣

∣

∣

. (11)

Since un converges weakly to u in the Hilbert space H1
0 (Ω) using Remark 1.33

on p. 22 in [17] we deduce

lim
n→∞

(‖un‖2 − ‖un − u‖2 − ‖u‖2) = 0 (12)
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On the other hand, we define the functional T : H1
0 (Ω) → R by

〈T, ϕ〉 =

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

)

∂ϕ

∂xi
dx, ∀ ϕ ∈ H1

0 (Ω).

It is clear that T is linear on H1
0 (Ω). Using Hölder’s inequality we deduce

|〈T, ϕ〉| ≤
N

∑

i=1

∫

Ω

∣

∣

∣

∣

sin

(

∂u

∂xi

)∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂xi

∣

∣

∣

∣

dx

≤
N

∑

i=1

∥

∥

∥

∥

sin

(

∂u

∂xi

)∥

∥

∥

∥

L2

·
∥

∥

∥

∥

∂ϕ

∂xi

∥

∥

∥

∥

L2

≤
(

N
∑

i=1

∥

∥

∥

∥

sin

(

∂u

∂xi

)∥

∥

∥

∥

2

L2

)1/2

·
(

N
∑

i=1

∥

∥

∥

∥

∂ϕ

∂xi

∥

∥

∥

∥

2

L2

)1/2

≤
(

N
∑

i=1

∥

∥

∥

∥

sin

(

∂u

∂xi

)∥

∥

∥

∥

2

L2

)1/2

· ‖ϕ‖, ∀ ϕ ∈ H1
0 (Ω).

Thus, T is linear and continuous on H1
0 (Ω). Since un converges weakly to u in

H1
0 (Ω) we obtain

lim
n→∞

N
∑

i=1

∫

Ω

sin

(

∂u

∂xi

) (

∂un

∂xi
− ∂u

∂xi

)

dx = 0. (13)

Relations (11), (12) and (13) imply

lim inf
n→∞

I(un) ≥ I(u).

We conclude that I is weakly lower semicontinuous on H1
0 (Ω). The proof of

Proposition 3 is complete.

Proof of Theorem 2. By relation (8) there exists Λ1 ∈ R such that

Λ1 = inf
u∈H1

0
(Ω),

R

Ω
u2 dx=1

I(u).

There exists (un), a minimizing sequence in H1
0 (Ω), i.e.

I(un) → Λ1

and
∫

Ω
u2

n dx = 1 for all n. We point out the fact that (un) is bounded in H1
0 (Ω).

Indeed, the above information shows that

‖un‖2 = I(un) +
n

∑

i=1

∫

Ω

cos

(

∂un

∂xi

)

dx

≤ I(un) + N |Ω|
≤ Λ1 + N |Ω| + c, ∀ n



Eigenvalue problems 335

where c is a positive constant.
The fact that (un) is bounded in H1

0 (Ω) implies that there exists u ∈ H1
0 (Ω)

such that un converges weakly to u in H1
0 (Ω). Since H1

0 (Ω) is compactly embed-
ded in L2(Ω) we deduce that

∫

Ω
u2 dx = 1. On the other hand, by Proposition 3

we have
Λ1 = lim inf

n→∞
I(un) ≥ I(u).

Thus we obtain I(u) = Λ1, i.e. u is a solution of problem (P).
Let v ∈ H1

0 (Ω) be arbitrary but fixed. Then for all ǫ in a suitable neighborhood
of the origin the function

g(ǫ) = I

(

u + ǫv

‖u + ǫv‖L2

)

=

∫

Ω

F

( ∇u + ǫ∇v

‖u + ǫv‖L2

)

dx

is well defined and possesses a minimum in ǫ = 0. Then it is clear that g
′

(0) = 0.
A simple computation shows that

g
′

(ǫ) =

∫

Ω

A
( ∇u + ǫ∇v

‖u + ǫv‖L2

)

· ∇v · ‖u + ǫv‖2
L2 − (∇u + ǫ∇v) · (

∫

Ω
uv dx + ǫ

∫

Ω
v2 dx)

‖u + ǫv‖3
L2

dx

Since
∫

Ω
u2 dx = 1 we get

g
′

(0) =

∫

Ω

A(∇u)

(

∇v −∇u

∫

Ω

uv dx

)

dx

and thus
∫

Ω

A(∇u)∇v dx = λ

∫

Ω

uv dx

where λ =
∫

Ω
A(∇u)∇u dx ≥ ‖u‖2 ≥ λ1

∫

Ω
u2 dx = λ1 > 0. We conclude that

λ ≥ λ1 is an eigenvalue for problem (1). The proof of Theorem 2 is complete. 2

4 Final remarks

In this section we point out the fact that our study can be extended to the
operators A : RN → RN of the type

A(ξ) = (A1(ξ), ...,AN (ξ)), ∀ ξ = (ξ1, ..., ξN ) ∈ RN

with A1, ...,AN : RN → R and Ai(ξ) = hi(ξi)+(k+1)ξi for all ξ = (ξ1, ..., ξN ) ∈
RN and all i ∈ {1, ..., N}, where k is a positive constant and for all i ∈ {1, ..., N},
hi : R → R are given functions. Assume that for any i ∈ {1, ..., N} the function
hi is of class C1 on R and admits a bounded primitive Hi : R → R. Moreover,
we assume that

|hi(ξ)| ≤ k and |h′

i(ξ)| ≤ min

{

k,
k + 1

2

}

, ∀ ξ ∈ R, i ∈ {1, ..., N}.
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Remark. In the case when hi(ξ) = cos(ξ) or hi(ξ) = sin(ξ) and k = 1 we
obtain the operators studied in the above sections. We remark that there exists
also other functions hi which satisfy the above conditions. An example can be
hi(ξ) = 1

α+1 · exp(−|ξ|) · sin(α · ξ), for all ξ ∈ R, where α > 0 and k = 1.

In the following we will say that an operator A : RN → RN is of the type
(T) if it verifies the above conditions. In the case of such an operator the same
arguments used in the proof of Theorems 1-3 enable us to state the following
result:

Theorem 4. (i) Assume A is an operator of type (T). Then there exists at least
a positive eigenvalue λ of problem (1), such that λ ≥ λ1 where λ1 is the first
eigenvalue of the Laplace operator.

(ii) Assume that A is an operator of type (T) and there exists i0 ∈ {1, ..., N} such
that hi0 does not vanish in the origin. Then any λ ∈ (0, λ1) is an eigenvalue of
problem (1), where λ1 is the first eigenvalue of the Laplace operator.
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[5] M. Mihăilescu and G. Moroşanu, On an eigenvalue problem for an
anisotropic elliptic equation involving variable exponents, submitted.
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