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On the isotropic subspace theorems
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Abstract

In this paper we explore the Isotropic Subspace Theorems of Catanese
and Bauer, establishing relations between isotropic subspaces in the 1-
cohomology of a quasi-projective variety M and certain irrational pencils
f : M → C, from the point of view of the Tangent Cone Theorem due to
Papadima, Suciu and the author.

In the proper case the picture is completely clear, and is described in sec-
tion 3. For the quasi-projective case and the associated logarithmic pencils,
the results are satisfactory only under the additional technical restriction
that M is 1-formal, see section 4.

The example of the configuration space of n distinct labeled points on an
elliptic curve, see Example 2.11, and that of the algebraic link of an isolated
C∗-surface singularity, see subsection (4.10), illustrate well the difficulties
in the general case.
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1 Introduction

By a fibration we mean a surjective morphism f : M → N with connected fibers
between two compact complex manifolds M and N . When M and N are quasi-
projective varieties, a fibration is a surjective morphism with a connected general
fiber (this is called an admissible morphism in [1]). Two fibrations f : M → C
and f ′ : M → C ′ over quasi-projective curves C and C ′ are called equivalent if
there is an isomorphism g : C → C ′ such that f ′ = g ◦ f .

The isotropic subspace theorem, due to Catanese in the case M proper, see
[4], Theorem 1.10 and [5], Isotropic Subspace Theorem 2.6., and to Bauer and
Catanese in the general case, see Bauer [2], Theorem 2.1 and Catanese [5], The-
orem 2.11,(Theorem of the logarithmic isotropic subspace), establishes roughly a
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bijection between the set E(M) of equivalence classes of fibrations f : M → C
(where M is fixed and C is variable with χ(C) < 0) and the set I(M) formed
by certain isotropic linear subspaces in the cohomology group H1(M,C), for a
precise statement refer to Theorems 3.1 and 4.1 below.

On the other hand, Arapura’s work [1] establishes a bijection between the same
set E(M) of equivalence classes of fibrations f : M → C and the set IC1(M) of
irreducible components of the first characteristic variety V1(M) passing through
the unit element 1 of the character group T(M) of M under the same assumption
χ(C) < 0, see Theorem 2.3 and Proposition 2.4 below.

Now taking for any irreducible component W ∈ IC1(M) (which is a smooth
subvariety in T(M) isomorphic to an affine torus) its tangent space E = T1W
at the origin, yields a linear subspace in H1(M,C), which is e-isotropic, for
e ∈ {0, 1}, see Definition 2.7.

Our first aim is to understand the relation between the Catanese-Bauer cor-
respondence and the correspondence

Φ : f ∈ E(M) 7→ Wf ∈ IC1(M) 7→ T1Wf ⊂ H1(M,C)

induced by Arapura’s results.

The missing link in general is the possibility to associate a component W ∈
IC1(M) to a linear subspace (with some isotropy properties) in H1(M,C). Due
to the Tangent Cone Theorem, one of the main results in [14], this construction
works perfectly well in the case of 1-formal manifolds M , and then our results can
be considered satisfactory. Indeed, in this case the image of the bijective corre-
spondence Φ is the set of strongly maximal e-isotropic subspaces in H1(M,C), see
Definition 2.8, Lemma 2.9, Corollary 3.4 and Propositions 4.2 and 4.5. The sim-
pliest example of this instance is when M is compact Kähler, which is discussed
in the third section.

On the other hand, for manifolds which are not 1-formal, the results are not
so clear yet. Our discussion in subsection 4.3 seems to suggest that the statement
of Theorem 4.1 needs some modification.

Using these techniques, one may also study fibrations f : M → C with
χ(C) = 0, but only when they have multiple fibers, more precisely when the
group T (f) defined in (2.7) is non-trivial. Then such fibrations produce trans-
lated components in V1(M), which are invisible if we look only at the origin in
T(M), see Propositions 3.6 and 4.7.

A second aim is to show the usefulness of characteristic varieties in the study
of multiple fibers of a fibration f : M → C, in particular for questions related to
the existence of such multiple fibers, see Corollary 2.15, and to the topological
invariance of the number and multiplicities of such fibers, see Theorem 5.1.
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2 Rank one local systems, characteristic and resonance varieties

Let M be a connected complex manifold of the form X \D, where X is compact
Kähler and D is a normal crossing divisor. Clearly M is compact if and only if D
is empty. We refer to this situation by saying that M is a quasi-Kähler manifold.

Let T(M) = Hom(π1(M),C∗) be the character variety of M . This is an alge-
braic group whose identity irreducible component is an algebraic torus T(M)1 ≃
(C∗)b1(M). Consider the exponential mapping

exp : H1(M,C) → H1(M,C∗) = T(M) (2.1)

induced by the usual exponential function exp : C → C∗.
Clearly exp(H1(M,C)) = T(M)1.
The characteristic varieties of M are the jumping loci for the cohomology of

M , with coefficients in rank 1 local systems:

Vi
k(M) = {ρ ∈ T(M) | dim Hi(M,Lρ) ≥ k}. (2.2)

When i = 1, we use the simpler notation Vk(M) = V1
k(M).

Remark 2.1. It is clear that the first characteristic varieties Vk(M) depend only
on the fundamental group G = π1(M). Actually, the varieties Vk(M) depend only
on the maximal metabelian quotient Gmeta = G/G′′ of G, see Corollary 2.5 in
[15] or [9].

The resonance varieties of M are the jumping loci for the cohomology of the
complex H∗(H∗(M,C), α∧), namely:

IRi
k(M) = {α ∈ H1(M,C) | dimHi(H∗(M,C), α∧) ≥ k}. (2.3)

When i = 1, we use the simpler notation IRk(M) = IR1
k(M).

Example 2.2. Assume that dim M = 1 and χ(M) < 0. It is easy to see that
that

V1(M) = T(M) and IR1(M) = H1(M,C).

In the sequel we concentrate ourselves on the strictly positive dimensional
irreducible components of the first characteristic variety V1(M). They have the
following rather explicit description, given by Arapura [1], see also Theorem 3.6
in [11].

Theorem 2.3. Let M be a quasi-Kähler manifold. Let W be a d-dimensional
irreducible component of the first characteristic variety V1(M), with d > 0. Then
there is a regular morphism f : M → C onto a smooth curve C = CW with
b1(C) = d such that the generic fiber F of f is connected, and a torsion character
ρ ∈ T(M) such that the composition

π1(F )
i♯
−→ π1(M)

ρ
−→ C∗,
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where i : F → M is the inclusion, is trivial and

W = ρ · f∗(T(C)).

In addition, dim W = −χ(CW ) + e, with e = 1 if CW is affine and e = 2 if CW

is proper. If L ∈ W , then dimH1(M,L) ≥ −χ(CW ) and equality holds for all
such L with finitely many exceptions when 1 ∈ W .

If 1 ∈ W , we say that W is a non-translated component and then one can take
ρ = 1. If 1 /∈ W , we say that W is a translated component.

One has the following partial converse, see Arapura [1].

Proposition 2.4. If f : M → C is a fibration with χ(C) < 0, then Wf =
f∗(T(C)) is an irreducible component of the first characteristic variety V1(M).
Moreover, the correspondence E(M) → IC1(M) given by [f ] 7→ Wf is a bijection.
In particular, the set E(M) is finite.

Propositions 2.4 implies the following related result.

Corollary 2.5. Let f0, f1 : M → C be two fibrations onto the curve C with
χ(C) < 0. If f0 and f1 are homotopic mappings, then f0 and f1 are equiva-
lent fibrations. In particular, in this case f0 and f1 have the same number and
multiplicities of multiple fibers.

Proof: Since f0 and f1 are homotopic mappings, it follows that

W = f∗

0 (H1(C,C∗)) = f∗

1 (H1(C,C∗)).

The irreducible component W ∈ IC1(M) determines uniquely an equivalence
class of fibrations in E(M), so the result follows.

The precise relation between the resonance and characteristic varieties is clear
only for 1-formal spaces and can be summarized as follows, see [14].

Theorem 2.6. Assume that the quasi-Kähler manifold M is 1-formal. Then the
irreducible components E of the resonance variety IR1(M) are linear subspaces in
H1(M,C) and the exponential mapping (2.1) sends these irreducible components
E onto the irreducible components W of V1(M) with 1 ∈ W . Moreover, if E and
E′ are distinct components of IR1(M), then E ∩ E′ = 0.

The property of M to be 1-formal depends only on the fundamental group
π1(M), see [14] for details. Note that the class of 1-formal varieties is large
enough, as it contains all the projective smooth varieties and any hypersurface
complement in P

n, see [14]. In fact, if the Deligne mixed Hodge structure on
H1(M,Q) is pure of weight 2, then the smooth quasi-projective variety M is
1-formal, see [18].

We recall the following definition from [14].
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Definition 2.7. A linear subspace E ⊂ H1(M,C) is called 0-isotropic (or simply
isotropic), if it is isotropic with respect to the cup-product H1(M,C)×H1(M,C) →
H2(M,C).

A linear subspace E ⊂ H1(M,C) is called 1-isotropic if the restriction of the
cup-product H1(M,C) × H1(M,C) → H2(M,C) to E × E has a 1-dimensional
image, and the resulting skew-symmetric form is non-degenerate.

Note that a maximal isotropic subspace can be contained in a (maximal)
1-isotropic subspace. To avoid such situations, we introduce the following notion.

Definition 2.8. A linear subspace E ⊂ H1(M,C) which is e-isotropic for e =
0 or e = 1 is called strongly maximal if given any e′-isotropic subspace E′ ⊂
H1(M,C) for e′ = 0 or e′ = 1 such that E ⊂ E′, one has E = E′

This notion is natural in this context due to the following.

Lemma 2.9. Assume that the quasi-Kähler manifold M is 1-formal. Then the
irreducible components E of the resonance variety IR1(M) are exactly the strongly
maximal e-isotropic subspaces in H1(M,C) for e = 0 or e = 1 such that dimE ≥
2 + e.

Proof: It follows from Theorem 2.3 that the irreducible components E of the
resonance variety coincide to subspaces of the form f∗(H1(M,C)), which are
clearly e-isotropic. IR1(M)

Assume that one has an e′-isotropic subspace E′ ⊂ H1(M,C) for e′ = 0 or
e′ = 1 such that E ⊂ E′ and E 6= E′. Since dimE′ > dim E ≥ 2, it follows
that E′ ⊂ IR1(M). This is a contradiction with the fact that E is an irreducible
component of the resonance variety IR1(M). The second claim follows in a similar
way by noting that E ⊂ IR1(M).

Remark 2.10. Since H1(M,C) = H1(M, R)⊗R C, it follows that H1(M,C) has
a natural complex conjugation involution, denoted simply by a 7→ a. We say that
a subspace E ⊂ H1(M,C) is real if E = E or, equivalently, if E comes from a real
subspace in ER ⊂ H1(M, R), i.e. E = ER ⊗R C. One interesting consequence of
the above results is that for M 1-formal, a strongly maximal e-isotropic subspace
as in Lemma 2.9 is necessarily real.

Example 2.11. Let C be a smooth compact complex curve of genus g = 1.
Consider the configuration space of n distinct labeled points in C,

M1,n = Cn \
⋃

i<j

∆ij ,

where ∆ij is the diagonal {s ∈ Cn | si = sj}. It is straightforward to check that
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(i) the inclusion j : M1,n → Cn induces an isomorphism j∗ : H1(Cn,C) →
H1(M1,n,C). In particular W1(H

1(M1,n,C)) = H1(M1,n,C).
(ii) using the above isomorphism, the cup-product map

2
∧

H1(M1,n,C) → H2(M1,n,C)

is equivalent to the composite

µ1,n :
∧2

H1(Cn,C)
∪Cn

// H2(Cn,C) // // H2(Cn,C)/ span{[∆ij ]}i<j , (2.4)

where [∆ij ] ∈ H2(Cn,C) denotes the dual class of the diagonal ∆ij, and the
second arrow is the canonical projection. See Section 9 in [14] for more details.

Let {a, b} be the standard basis of H1(C,C) = C2. Note that the coho-
mology algebra H∗(Cn,C) is isomorphic to

∧

∗
(a1, b1, . . . , an, bn). Denote by

(x1, y1, . . . , xn, yn) the coordinates of z ∈ H1(M1,n,C). Using (2.4), it is readily
seen that

IR1(M1,n) =

{

(x, y) ∈ Cn × Cn

∣

∣

∣

∣

∑n
i=1 xi =

∑n
i=1 yi = 0,

xiyj − xjyi = 0, for 1 ≤ i < j < n

}

.

Suppose n ≥ 3. Then IR1(M1,n) is the affine cone over a rational normal
scroll in P

2n−3. Indeed, one may use x1, ..., xn−1, y1, ..., yn−1 as coordinates on
the vector space

V = {(x, y) ∈ Cn × Cn |

n
∑

i=1

xi =

n
∑

i=1

yi = 0} ≃ C2n−2.

The resonance variety IR1(M1,n) is contained in V and is given here by the equa-
tions

xiyj − xjyi = 0, for 1 ≤ i < j < n.

These equations, regarded in P(V ) ≃ P
2n−3, define the image Σn−2,1 of the Segre

mapping
s : P

n−2 × P
1 → P(V ), (a, [u : v]) 7→ (ua : va).

Now Σn−2,1 is just the (n−1)-fold scroll S1,...,1, with 1 repeated (n−1)-times, see
[17], Exercise 8.27. In particular, IR1(M1,n) is an irreducible, non-linear variety.
From Theorem 2.6, we conclude that M1,n is not 1-formal.

The maximal isotropic subspaces E ⊂ H1(M1,n,C) are (infinitely many and)
all of dimension 2 since they have the form

Ex = {(αx, βx) | (α, β) ∈ C2} =< (x, 0), (0, x) >

for a fixed x ∈ Cn, x 6= 0 with
∑n

i=1 xi = 0. In other words these are the 2-planes
corresponding to the lines s(a × P

1) for a ∈ P
n−2. Note that Ex is real if and

only if x ∈ R
n.
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The subspaces Ex come from non-isotropic subspaces E′

x ⊂ H1(Cn,C) and
therefore, Theorem 4.1 says nothing about them. In fact one knows exactly which
one of them are associated to an irrational pencil, see [13], Proposition 4.5. More
precisely, they correspond to the vectors xij ∈ Cn having 1 on the i-th coordinate,
−1 on the j-th coordinate and all the other coordinates zero for some pair 1 ≤
i < j ≤ n.

Note also that besides these isotropic subspaces Ex, the resonance variety
IR1(M1,n) contains some higher dimensional linear subspaces (coming from
s(Pn−2 × b) for b ∈ P

1, which are neither 0- nor 1- isotropic.

Let f : M → C be a surjective morphism with a generic connected fiber F .
Let C(f) ⊂ C be a finite, minimal subset such that if we put C ′ = C \ C(f),
M ′ = f−1(C ′), then the induced mapping f : M ′ → C ′ is a topologically locally
trivial fibration. Then, we have an exact sequence

H1(F )
i′
∗−→ H1(M

′)
f ′

∗−→ H1(C
′) → 0 (2.5)

as well as a sequence

H1(F )
i∗−→ H1(M)

f∗

−→ H1(C) → 0 (2.6)

which is not necessarily exact in the middle, i.e. the group

T (f) =
ker f∗
ı̂i∗

(2.7)

is non-trivial in general. Here i : F → M and i′ : F → M ′ denote the inclusions,
and homology is taken with ZZ-coefficients if not stated otherwise.

This group was studied for f : M → C proper by Serrano, see [19], but his
results are correct only when M and S are compact. On the other hand, the
situation when M is compact was studied by A. Beauville in [3].

For c ∈ C(f) we denote by mc the multiplicity of the divisor Fc = f−1(c). We
have the following result, where the first claim is already in [3], see the remarks
after Proposition 1.19, and in Serrano, see [19]. However, this second author
wrongly claims that the isomorphism in (i) holds for the case (ii) as well, see [11]
for details.

Theorem 2.12.

(i) If the curve C is proper, then

T (f) =
(

⊕c∈C(f)ZZ/mcZZ
)

/(1̂, ..., 1̂).

(ii) If the curve C is not proper, then

T (f) = ⊕c∈C(f)ZZ/mcZZ.
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The main interest in this group comes from the fact that it parametrizes the
translated components in V1(M) parallel to the subtorus f∗T(C) in T(M), see
Beauville [3] in the compact case and Corollary 5.8 in [11] in the general case.

Remark 2.13. Note that the group T (f) is trivial either if there are no mul-
tiple fibers or, in the case C proper, if the multiplicities m1, ...,ms are pairwise
coprime. Given M , we do not know which sets of pairwise coprime multiplicities
m1, ...,ms can actually occur.

Now we can play the same game using fundamental groups instead of H1-
groups. Consider the sequence

π1(F )
i♯
−→ π1(M)

f♯
−→ π1(C) → 1 (2.8)

and define the group

P (f) =
ker f♯

ı̂i♯
. (2.9)

This is possible since ı̂i♯ is a normal subgroup in π1(M), being the epimorphic
image of the normal subgroup ker f ′

♯ = ı̂i′♯ in π1(M
′). Unlike the group T (f), the

group P (f) is not necessarily finitely generated. This is clarified by Catanese in
[6], see especially the proofs of Lemmas 4.2 and 5.3.

Theorem 2.14. Let M be a quasi-Kähler manifold and f : M → C be a fibration
with χ(C) ≤ 0. Then the following conditions are equivalent.

(i) the fibration f has no multiple fibers;

(ii) the group ker{f♯ : π1(M) → π1(C)} is finitely generated;

(iii) the group P (f) is finitely generated;

(iv) the group P (f) is trivial, i.e. the sequence (2.8) is exact.

Combining Theorem 2.12 (ii) and Theorem 2.14 we get the following.

Corollary 2.15. Let M be a quasi-Kähler manifold and f : M → C be a fibration
with χ(C) ≤ 0. Then, if C is non compact, the following conditions are equivalent.

(i) the group P (f) is trivial, i.e. the sequence (2.8) is exact.

(ii) the group T (f) is trivial, i.e. the sequence (2.6) is exact.

3 The isotropic subspace theorem: the proper case

The following fundamental result is due to Catanese, see [4], Theorem 1.10 and
[5], Isotropic Subspace Theorem 2.6.
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Theorem 3.1. Let M be a compact Kähler manifold. Then the correspondence
associating to a fibration f : M → C where C is a projective curve of genus g ≥ 2
the subspace E = f∗(H1(C,C)) ⊂ H1(M,C) induces a bijection between:

(i) equivalence classes of fibrations f : M → C where C is a curve of genus g ≥ 2,
and

(ii) 2g-dimensional subspaces E ⊂ H1(M,C) which can be written as E = U ⊕U ,
with U a maximal isotropic subspace for the cup-product H1(M,C)×H1(M,C) →
H2(M,C).

Remark 3.2. (i) For any maximal isotropic subspace V ⊂ H1(M,C) of dimen-
sion g ≥ 2 there is a fibration f : M → C onto a smooth curve of genus g and
a maximal isotropic subspace V ′ ⊂ H1(C,C) such that V = f∗V ′, see Theorem
1.10 in [4]. It follows from Theorem 2.6 that the fibration f is uniquely deter-
mined by V . On the other hand, given f , the set of maximal isotropic subspaces
in E = f∗(H1(C,C)) is exactly the complex Lagrangian Grassmannian LG(E),
a complex manifold of dimension g(g + 1)/2 with g the genus of C, see for in-
stance [16], Chapter 3. Moreover, the set of real maximal isotropic subspaces in
E = f∗(H1(C,C)) is exactly the real Lagrangian Grassmannian LG(ER), a real
manifold of dimension g(g + 1)/2. So in fact any fibration f : M → C as above
is associated to some real maximal isotropic subspace VR ⊂ H1(M, R). This fact
is useful in understanding the relation of Theorem 3.1 to Theorem 4.1.

(ii) It is not true that any maximal isotropic subspace U ⊂ H1(M,C) with
dimU = g ≥ 2 satisfies U∩U = 0, as claimed in Remark 2.7. (b) in [5]. Indeed, if
one takes V ′ to be a real subspace in H1(C,C) (coming from a maximal isotropic
subspace in H1(C, R)) , then V will be a real maximal subspace in H1(M,C) and
hence V = V .

On the other hand, we can consider only maximal isotropic subspaces U ⊂
F 1H1(M,C) = H0(M,Ω1

M ) and in this case the choice for U is unique and
satisfies U ∩ U = 0. Note also that such isotropic subspaces V are maximal but
neither strongly maximal nor real in general.

(iii) Any 2g-dimensional subspace E ⊂ H1(M,C) as in Theorem 3.1, (ii) is
1-isotropic and real. Moreover E is strongly maximal as in Lemma 2.9, see the
next Corollary.

Since a compact Kähler manifold is 1-formal, see [8], the Tangent Cone The-
orem in [14] implies the following.

Corollary 3.3. Let M be a compact Kähler manifold. Then, for any k ≥ 1, the
tangent cone at the origin TC1(Vk(M)) to the k-th characteristic variety Vk(M)
is the union of all the 2g-dimensional strongly maximal 1-isotropic subspaces
E ⊂ H1(M,C) with 2g − 2 ≥ k.

Corollary 3.4. Let M be a compact Kähler manifold. Then the irreducible
components of the resonance variety IR1(M) are linear subspaces and, for g ≥ 2,
the following three finite sets of subspaces of H1(M,C) coincide.
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(i) 2g-dimensional (strongly) maximal 1-isotropic (real) subspaces E ⊂ H1(M,C);

(ii) 2g-dimensional irreducible components E of the resonance variety IR1(M);

(iii) 2g-dimensional subspaces E ⊂ H1(M,C) which can be written as E = U⊕U ,
with U a maximal isotropic subspace for the cup-product H1(M,C)×H1(M,C) →
H2(M,C).

It is clear that this set of subspaces E, and hence, in view of Theorem 3.1,
the corresponding fibrations fE : M → C, with g(C) = g ≥ 2 are completely
determined by the cup-product H1(M,C) × H1(M,C) → H2(M,C).

We can ask the following natural question: can we decide from the subspace
E and the cup-product (or some other (co)homological data not involving funda-
mental groups) whether the associated fibration fE has multiple fibers?

We have only a very partial answer in the compact case coming from Theorem
2.12 (i).

Corollary 3.5. Let M be a compact Kähler manifold and f : M → C be a
fibration. Then the associated group T (f) is trivial if and only if either f : M → C
has no multiple fibers, or the multiplicities m1, ...,ms are pairwise coprime.

The existence of fibrations f : M → C in the case g(C) = 1 is partially settled
by the following.

Proposition 3.6. Let M be a compact Kähler manifold. Then there exists a
fibration f : M → C with g(C) = 1 and T (f) non-trivial if and only if there is
at least one 2-dimensional (necessarily translated) component W in the charac-
teristic variety V1(M). In such a case there is a component W as above which in
addition is parallel to the subtorus W0 = f∗T(C) in T(M).

Proof: This claim follows directly from the description of the translated com-
ponents in [3], see also [11]. Note that in this case the corresponding non-
translated component W0 is missing, and this is the key difference with the case
g ≥ 2.

4 The isotropic subspace theorem: the logarithmic case

Suppose now that M is a non-compact quasi-projective manifold. Then the co-
homology group H1(M,Q) carries a weight filtration 0 = W0 ⊂ W1 ⊂ W2 =
H1(M,Q), such that for any smooth compactification j : M ⊂ X, with X pro-
jective, the morphism j∗ : H1(X,Q) → H1(M,Q) is injective (hence one can
regard H1(X,Q) as a subspace of H1(M,Q)) and W1 = j∗H1(X,Q).

The correspondence between irrational pencils and isotropic subspaces is much
more subtle in this case, see Bauer [2], Theorem 2.1 and Catanese [5], Theorem
2.11, Theorem of the logarithmic isotropic subspace, which we reproduce below.
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Theorem 4.1. Let M be a quasi-projective manifold, M = X \ D, with X
smooth and projective and D a normal crossing divisor. Then every real maximal
isotropic subspace V of H1(M, R) either of dimension ≥ 3 or of dimension 2 but
not coming from a non-isotropic subspace V ′ of H1(X, R) (this case is not covered
by the theorem) determines a unique logarithmic irrational pencil f : M → C onto
a curve C with logarithmic genus g∗ ≥ 2.

The curve C is projective if and only if V ⊂ H1(X, R), and is isotropic there,
otherwise V = f∗(H1(C, R)), and one says that the pencil is strictly logarithmic.

Here the logarithmic genus g∗ of the curve C is defined by the equality b1(C) =
g+g∗, where g is the genus of (a compactification of) C. Note that g∗ ≥ 2 implies
(but it is not equivalent to) χ(C) < 0. A key point here is that there is no bijection
result similar to the compact case covered by Theorem 3.1, i.e. there might exist
some logarithmic irrational pencils not coming from a real maximal isotropic
subspace as in Theorem 4.1. There are some bijection claims in Theorem 2.1 and
Theorem 2.4 in [2], but they do not hold as stated, see for instance Example 4.6.

The difficulties of the case is not covered by the theorem are highlighted
by our Example 2.11, in which there are infinitely many real maximal isotropic
subspace V of H1(M, R) of dimension 2 coming from non-isotropic subspaces
V ′ of H1(X, R), and some of them (finitely many) are associated to logarithmic
irrational pencil fij : M → C1 onto a curve C1 with logarithmic genus g∗ = 1
and χ(C1) = −1.

We intend to look at this non-proper situation closer, by imposing at some
points the condition that M is 1-formal, in order to better grasp the correspon-
dence between irrational pencils and isotropic subspaces. With this additional
hypothesis, we recover the bijection between equivalence classes of pencils and
certain e-isotropic subspaces, see Propositions 4.2 and 4.5.

In this situation there are the following two cases to discuss.

4.1 The case C proper, of genus g ≥ 2

Assume f : M → C is a fibration. Then M admits a compactification X such
that f extends to a fibration f̃ : X → C. According to Theorem 3.1, f̃ is
uniquely determined by a 2g-dimensional strongly maximal 1-isotropic subspace
Ẽ = f̃∗(H1(C,C) in H1(X,C) or, equivalently, by the g-dimensional maximal
isotropic subspace Ũ = f̃∗(H0(C,Ω1

C)).
Using the injection j∗ : H1(X,C) → H1(M,C), it follows that E = j∗(Ẽ) is

an e-isotropic subspace, where e = 1 if the morphism

f∗ : H2(C,C) → H2(M,C) (4.1)

is non-trivial, and e = 0 otherwise. Both cases are possible: indeed, if M is
1-formal then e = 1, see Prop. 5.10 (3) in [14], while an example with e = 0 is
given in Example 5.11 in [14]. We have the following.
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Proposition 4.2. Assume M is 1-formal and f : M → C is a fibration on the
proper curve C of genus g ≥ 2. Then:
(i) E = f∗(H1(C,C)) is a 2g-dimensional strongly maximal 1-isotropic real sub-
space of H1(M,C). Moreover, E is contained in W1H

1(M,C) = H1(X,C)
and is 1-isotropic there. Conversely, for any 2g-dimensional strongly maximal
1-isotropic real subspace of H1(M,C) contained in W1H

1(M,C) = H1(X,C),
there is a fibration f : M → C on the proper curve C of genus g ≥ 2 such that
E = f∗(H1(C,C)).
(ii) U = f∗(H1(C,Ω1

C) is a g-dimensional maximal isotropic subspace of H1(M,C)
such that E = U ⊕ U . Moreover, U is contained in W1H

1(M,C) = H1(X,C)
and is isotropic there.
(iii) the equivalence class of the fibration f is determined by the subspace E. Con-
versely, any 2g-dimensional strongly maximal 1-isotropic subspace of H1(M,C)
determines such an equivalence class of fibrations.

Proof: The first claim in (i) is clear. For the converse claim, use Theorem 3.1
and get a map f̃ : X → C and then set f = F̃ |M .

The claim (ii) is obvious.
In (iii), the subspace E has dimension at least 4, hence produces an irre-

ducible component of the resonance variety IR1(M) in view of Lemma 2.9. Us-
ing 1-formality, we know that W = exp(E) is an irreducible component of the
characteristic variety. By Arapura’s results, this comes from a fibration onto a
projective curve of genus g, whose equivalence class is determined by W (this
follows for instance from Lemmas 6.2, 6.3 and the proof of Part 3 in Theorem 6.4
in [14].)

Corollary 4.3. Let M be a quasi-projective manifold which is 1-formal. Then
any strongly maximal 1-isotropic subspace of H1(M,C) of dimension at least 4 is
contained in W1H

1(M,C).

Remark 4.4. When M is not 1-formal, Example 5.11 in [14] shows that E =
f∗(H1(C,C)) can be isotropic in H1(M,C) but 1-isotropic in H1(X,C). See also
subsection 4.3 below for other examples. In such cases, one should decide which
of the isotropic subspaces E and U should be associated to f , which explains the
rather complicated statement in Theorem 4.1. It is not clear whether E is strongly
maximal in this situation.

One advantage of using the subspaces U is that they stay isotropic both in
H1(M,C) and in H1(X,C).

4.2 The case C non-proper, with χ(C) = 1 − g − g∗ < 0

In this case E = f∗(H1(C,C)) is an isotropic subspace in H1(M,C). Moreover
E ⊂ W1H

1(M,C) exactly when C is obtained from a projective curve C̃ by delet-
ing one point p. In this special case, the inclusion C ⊂ C̃ induces an isomorphism
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of Hodge structures
H1(C,C) ≃ H1(C̃,C)

which implies that E is pure of weight 1. Moreover, there is a compactification X
of M and an extension f̃ : X → C̃ of f . It follows that E, regarded as a subspace
of W1H

1(M,C) = H1(X,C) is 1-isotropic as in the previous subsection.
This proves the following.

Proposition 4.5. Assume M is 1-formal and f : M → C is a fibration on the
non-proper curve C with χ(C) = 1 − g − g∗ < 0. Then:
(i) E = f∗(H1(C,C)) is a (g + g∗)-dimensional strongly maximal isotropic sub-
space of H1(M,C). The equivalence class of the fibration f is determined by the
subspace E. Conversely, any strongly maximal isotropic subspace of H1(M,C) of
dimension at least 2 determines such an equivalence class of fibrations.
(ii) E ⊂ W1H

1(M,C) exactly when C is obtained from a projective curve C̃ by
deleting one point p. In this case one has the following

(a) E, regarded as a subspace of W1H
1(M,C) = H1(X,C) is 1-isotropic;

(b) U = f∗(H1(C,Ω1
C̃

)) is a g-dimensional maximal isotropic subspace of

H1(M,C) such that E = U ⊕U , U is contained in W1H
1(M,C) = H1(X,C) and

is isotropic there.

Note that the last case (ii) when in addition g = 1 is excluded in Theorem
4.1, but is covered by our Proposition 4.5.

Example 4.6. Let C1 and C2 be two smooth projective curves of genus g1 ≥ 2
and respectively g2 ≥ 2. Pick points p1 ∈ C1 and p2 ∈ C2 and set

M = (C1 \ {p1}) × (C2 \ {p2}).

The surface M is 1-formal by Proposition 7.2 in [14] and the cohomology algebra
H∗(M, IK) is easy to determine for any field IK = Q, R,C. Let pi : M → Ci \
{pi} be the two projections, for i = 1, 2. The only (strongly) maximal isotropic
subspaces in the cohomology group H1(M, IK) are Ei = p∗i (H

1(Ci \ {pi}, IK)) for
i = 1, 2 and both of them are subspaces of W1H

1(M, IK) = H1(X, IK) and are
1-isotropic there. It follows that the only irrational pencils f : M → C are those
equivalent to p1 and p2.

This example shows in particular that Theorem 2.1 and Theorem 2.4 in [2]
do not hold as stated (indeed, the sets of isotropic subspaces considered in the
final statement in Theorem 2.1 and in Theorem 2.4 are empty for our example
(in the latter case there are no strongly isotropic subspaces), but we have the two
irrational pencils p1 and p2).

The existence of fibrations f : M → C∗ is partially settled by the following
analog of Proposition 3.6

Proposition 4.7. Let M be a quasi-projective manifold. Then there exists a
fibration f : M → C∗ with T (f) non-trivial if and only if there is at least one
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1-dimensional (necessarily translated) component W in the characteristic variety
V1(M). In such a case there is a component W as above which in addition is
parallel to the subtorus W0 = f∗T(C∗) in T(M).

Proof: This claim follows directly from the description of the translated compo-
nents in [11]. Note that in this case, exacly as in the compact case, the corre-
sponding non-translated component W0.

4.3 A non-formal example: isolated surface singularities with C∗-

action

Let (Y, 0) be an isolated surface singularity with a good C∗-action. Represent the
singularity (Y, 0) by an affine surface Y with a good C∗-action. If M := X \ {0},
then M is homotopy equivalent to K, the link of the singularity (Y, 0) and the
quotient C := M/C∗ is a smooth projective curve of genus g such that b1(M) =
2g, see [10], p. 52 and p. 66. Assume in the sequel that g ≥ 1.

By one of Sullivan’s results in [20], we know that the cup-product is trivial
on H1(M, IK), for IK = Q, R,C as above. The projection p : M → C is surjective
and the fibers are all connected, since isomorphic to C∗. It follows that p∗ :
H1(M,ZZ) → H1(C,ZZ) = ZZ

2g is an epimorphism inducing an isomorphism

p∗ : H1(C,Q) → H1(M,Q).

It follows that the mixed Hodge structure on H1(M,Q) is pure of weight 1. This
shows that for any compactification j : M → X, with X smooth projective, the
induced morphism

j∗ : H1(X,Q) → H1(M,Q)

is an isomorphism.
If G = π1(M) were 1-formal, then Proposition 5.10 in [14] would imply that

p∗ : H2(C,C) → H2(M,C)

is injective, in contradiction to the triviality of the cup-product on H1(M,C).
Therefore M is not 1-formal.

Now let’s try to apply Theorem 4.1 to the quasi-projective manifold M and the
real maximal isotropic subspace V = H1(M, R) in the case g ≥ 2, i.e. dim V ≥ 4.
Note that V is coming from a non-isotropic subspace of H1(X, R) = H1(M, R)
(due to the Hodge-Riemann bilinear relations for X it follows that the cup-
product is not trivial on H1(X,C), and hence non-trivial on H1(X, R)), but
it is not excluded since dimV ≥ 4.

Let f : M → C ′ be the fibration associated to V by Theorem 4.1. Since
V is not isotropic in H1(X, R), it follows that C ′ is a non-compact curve with
b1(C

′) = 2g ≥ 4. Since the only morphisms C∗ → C ′ in this setting are the
constant ones, it follows that f is constant on the fibers of p.
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This remark produces an induced mapping φ : C → C ′ such that φ ◦ p = f .
Since C is compact and C ′ is not compact, the only posibility is that φ is constant,
but this contradicts the surjectivity of f . In conclusion, the last claim in Theorem
4.1 does not hold as stated in [5].

It may seem that one can avoid this problem by discarding all isotropic sub-
spaces V ⊂ H1(M, R) coming from a non-isotropic subspace of H1(X, R), not just
those of dimension 2. However, Proposition 4.5 (ii) and Example 4.6 show that
these subspaces cannot be discarded without losing certain associated irrational
fibrations.

5 On the multiple fibers of a strictly logarithmic irrational pencil

Let f : M → C be a strictly logarithmic irrational pencil, i.e. C is a non-
compact curve with χ(C) < 0. Let M ′ be another quasi-projective manifold and
assume h : M → M ′ is a homeomorphism. Then h induces an isomomorphism
of algebraic groups h∗ : T(M ′) → T(M) given by L 7→ h−1L, the sheaf theoretic
inverse image, such that

(h∗)−1(V1(M)) = V1(M
′).

Indeed, one obviously has

dim H1(M,h−1L′) = dim H1(M ′,L′). (5.1)

According to Proposition 2.4, the mapping f produces a non-translated irre-
ducible component Wf of the characteristic variety V1(M). The set (h∗)−1(Wf )
is then a non-translated irreducible component Wf ′ of the characteristic variety
V1(M

′), corresponding to a pencil f ′ : M ′ → C ′. Since the generic dimension of
H1(M,L) along the non-translated component Wf is exactly −χ(C), see Theo-
rem 2.3, it follows that χ(C ′) = χ(C). Moreover, the equality dimWf = dim Wf ′

(topological invariance of dimension), combined with the formula given in Theo-
rem 2.3 for these dimension, shows that C ′ is also a non-compact curve.

We have the following result.

Theorem 5.1. Let f : M → C be a strictly logarithmic irrational pencil. Let
M ′ be another quasi-projective manifold and assume h : M → M ′ is a home-
omorphism. Then there is an associated strictly logarithmic irrational pencil
f ′ : M ′ → C ′ onto a curve C ′ with χ(C ′) = χ(C). Moreover, the two strictly log-
arithmic irrational pencils f : M → C and f ′ : M ′ → C ′ have the same number
and multiplicies of multiple fibers.

Proof: Suppose that f has s multiple fibers, with respective multiplicities
m1, ...,ms. It follows from Theorem 2.12 that

T (f) = ⊕i=1,sZZ/msZZ.
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Let s′,m′

1, ...m
′

s′ be the corresponding data for f ′. It follows from [11] that for

each element k = (k̂1, ..., k̂s) ∈ T (f), k 6= 0, there is exactly one translated
component Wk in V1(M) parallel to the component Wf = W0. Moreover the
generic dimension of H1(M,L) along the translated component Wk is exactly
−χ(C) + n(k), where n(k) is the number of non-trivial components in k, see
[11]. It follows that the number of such translated components along which the
generic dimension of H1(M,L) is −χ(C) + r is exactly σr(m1 − 1, ...,ms − 1),
where σr is the r-th elementary symmetric function, i.e. σ1(m1 − 1, ...,ms − 1) =
∑

(mi − 1), σ2(m1 − 1, ...,ms − 1) =
∑

i<j(mi − 1)(mj − 1) and so on. The
maximal value of r is s, the total number of multiple fibers of f .

It is clear that the number of the translated components parallel to Wf along
which the generic dimension of H1(M,L) has a given value, say −χ(C) + r, is
invariant by the homeomorphism h, in view of the formula (5.1). Hence we get
s = s′ and

σr(m1 − 1, ...,ms − 1) = σr(m
′

1 − 1, ...,m′

s − 1)

for r = 1, ..., s, which completes the proof of the claim.

Remark 5.2. The analogous result to Theorem 5.1, for M proper and the genus
g of C at least 1, is also true, and it follows immediately from Theorem 4.14 in
Catanese’s recent paper [7]. The condition imposed there that (g,m1, ...,ms) is a
hyperbolic type is no restriction, since it is equivalent to

χorb(C) = χ(C) −
∑

i=1,s

(1 −
1

mi

) ≤ 0,

see Delzant [9]. In fact a similar approach, using the results in [6], may provide
an alternative proof for Theorem 5.1 and also of the corresponding result in the
case M non proper but C proper.
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