On the Ramsey numbers for paths and generalized Jahangir graphs $J_{s,m}$

by Kashif Ali, E. T. Baskoro, I. Tomescu

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we determine the Ramsey number of paths versus generalized Jahangir graphs. We also derive the Ramsey number $R(tP_n, H)$, where H is a generalized Jahangir graph $J_{s,m}$ where $s \geq 2$ is even, $m \geq 3$ and $t \geq 1$ is any integer.

Key Words: Ramsey number, path, generalized Jahangir graph.

2000 Mathematics Subject Classification: Primary 05C55, Secondary 05D10.

1 Introduction

The study of Ramsey numbers for (general) graphs have received tremendous efforts in the last two decades, see few related papers [1]-[4], [6, 8] and a nice survey paper [7].

Let $G(V, E)$ be a graph with vertex-set $V(G)$ and edge-set $E(G)$. If $xy \in E(G)$ then x is called adjacent to y, and y is a neighbor of x and vice versa. For any $A \subseteq V(G)$, we use $N_A(x)$ to denote the set of all neighbors of x in A, namely $N_A(x) = \{y \in A | xy \in E(G)\}$. Let P_n be a path with n vertices, C_n be a cycle with n vertices, W_k be a wheel of $k + 1$ vertices, i.e., a graph consisting of a cycle C_k with one additional vertex adjacent to all vertices of C_k. For $s, m \geq 2$, the generalized Jahangir graph $J_{s,m}$ is a graph on $sm + 1$ vertices i.e., a graph consisting of a cycle C_{sm} with one additional vertex which is adjacent to m vertices of C_{sm} at distance s to each other on C_{sm}.
Recently, Surahmat and Tomescu [9] studied the Ramsey number of a combination of paths P_n versus $J_{2,m}$, and obtained the following result.

Theorem A. [9].

$$R(P_n, J_{2,m}) = \begin{cases}
6 & \text{if } (n, m) = (4, 2), \\
n + 1 & \text{if } m = 2 \text{ and } n \geq 5, \\
n + m - 1 & \text{if } m \geq 3 \text{ and } n \geq (4m - 1)(m - 1) + 1.
\end{cases}$$

For the Ramsey number of P_n with respect to wheel W_m, Surahmat and Baskoro [1] showed the following result.

Theorem B. [1].

$$R(P_n, W_m) = \begin{cases}
2n - 1 & \text{if } m \geq 4 \text{ is even and } n \geq \frac{m}{2}(m - 2), \\
3n - 2 & \text{if } m \geq 5 \text{ is odd and } n \geq \frac{m - 1}{2}(m - 3).
\end{cases}$$

In this paper, we determine the Ramsey numbers involving paths P_n and generalized Jahangir graphs $J_{s,m}$. We also find the Ramsey number $R(tP_n, H)$, where H is a generalized Jahangir graph $J_{s,m}$ where $s \geq 2$ is even, $m \geq 3$. In the following section we prove our main results.

2 Main Results

Theorem 1. For even $s \geq 2$ and $m \geq 3$, $R(P_n, J_{s,m}) = n + \frac{sm}{2} - 1$, where $n \geq (2sm - 1)(\frac{sm}{2} - 1) + 1$.

Proof: Let $G = K_{n-1} \cup K_{\frac{sm}{2}-1}$. We have $R(P_n, J_{s,m}) \geq n + \frac{sm}{2} - 1$ since $P_n \not\subseteq G$ and $J_{s,m} \not\subseteq G$. It remains to prove that $R(P_n, J_{s,m}) \leq n + \frac{sm}{2} - 1$. Let F be a graph of order $n + \frac{sm}{2} - 1$ and containing no path P_n, we will show that $F \supseteq J_{s,m}$.

Let $L_1 = l_{1,1}, l_{1,2}, \ldots, l_{1,k}$ be the longest path in F and so $k \leq n - 1$. If $k = 1$ we have $F \cong K_n + \frac{sm}{2} - 1$, which contains $J_{s,m}$. Suppose that $k \geq 2$ and $J_{s,m} \not\subseteq F$. We have $z_l \not\in E(F)$ for each $z \in V_1 = V(F) \setminus V(L_1)$. We distinguish two cases:

Case 1. $k \leq 2sm - 1$. Let $L_2 = l_{2,1}, l_{2,2}, \ldots, l_{2,t}$ be a longest path in $F[V_1]$. It is clear that $1 \leq t \leq k$. If $t = 1$ then the vertices in V_1 induce a subgraph having only isolated vertices. In this case we shall add an edge uv to F, where $u, v \in V_1$ and denote $L_2 = u, v$. In this way we can define inductively the system of paths $L_1, L_2, \ldots, L_{\frac{sm}{2}-1}$ such that L_i is a longest path in $F[V_{i-1}]$, where $V_{i-1} = V(F) \setminus \bigcup_{j=1}^{i-1} V(L_j)$ or an edge added to F as above. By denoting the set of remaining vertices by B, we have $|B| \geq n + \frac{sm}{2} - 1 - \frac{(sm)}{2}(-1)(2sm - 1) \geq \frac{sm}{2} \geq 3$ since $s \geq 2$ and $m \geq 3$. Let $x, y, z \in B$ be three distinct vertices which are not in any L_j for $j = 1, 2, \ldots, \frac{sm}{2}-1$. Clearly, x, y, z are not adjacent to all endpoints of these L_j. If F_1 denotes the graph F or the graph F plus some edges added
in the process of defining the system of paths, it follows that the endpoints of these \(L_j \) induce in \(F_1 \) a complete graph \(K_{sm-2} \) minus a matching having at most \(\frac{sm}{2} - 1 \) edges if some of the endpoints of same \(L_j \) are adjacent in \(F_1 \). Since \(x, y, z \) are not adjacent to all endpoints of these \(L_j \) it is easy to see that vertices \(x, y, z \) and endpoints of the paths \(L_j \) form a \(J_{s,m} \subseteq F_1 \subseteq F \).

Case 2. \(k > 2sm - 1 \). In this case we define \(\frac{sm}{2} - 1 \) quadruple of consecutive vertices of \(L_1 \) as follows:

\[
C_1 = \{l_{1,2}, l_{1,3}, l_{1,4}, l_{1,5}\},
\]

\[
C_2 = \{l_{1,6}, l_{1,7}, l_{1,8}, l_{1,9}\},
\]

\[
\vdots
\]

\[
C_{\frac{sm}{2} - 1} = \{l_{1,2sm-6}; l_{1,2sm-5}, l_{1,2sm-4}, l_{1,2sm-3}\}.
\]

Let \(Y = V(F) \setminus V(L_1) \). We have \(|Y| = n + \frac{sm}{2} - 1 - k \geq \frac{sm}{2} \) since \(k \leq n - 1 \). Hence we can consider \(\frac{sm}{2} \) distinct elements in \(Y \): \(y_1, y_2, \ldots, y_{sm} \) and \(\frac{sm}{2} - 1 \) pairs of elements \(Y_i = \{y_i, y_{i+1}\} \) for \(i = 1, \ldots, \frac{sm}{2} - 1 \). By the maximality of \(L_1 \) it follows that for each \(i = 1, \ldots, \frac{sm}{2} - 1 \) at least one vertex in \(C_i \) is not adjacent to any vertex in \(Y_i \). Denote by \(c_i \) the vertex in \(C_i \) which is not adjacent to any vertex in \(Y_i \) for \(i = 1, \ldots, \frac{sm}{2} - 1 \). We have \(F \supseteq J_{s,m} \), where \(J_{s,m} \) consists of the cycle \(C_{sm} \) having \(V(C_{sm}) = \{y_1, c_1, y_2, c_2, \ldots, y_{\frac{sm}{2} - 1}, c_{\frac{sm}{2} - 1}, y_{\frac{sm}{2}}, l_{1,1}\} \) and the hub \(l_{1,1} \).

Theorem 2. *For odd \(s \geq 3 \),

\[
R(P_n, J_{s,m}) = \begin{cases}
2n - 1 & \text{if } n \geq \frac{sm}{2}(sm - 2), \text{ and } m \geq 2 \text{ is even,} \\
2n & \text{if } n \geq \frac{sm-1}{2}(sm - 1), \text{ and } m \geq 3 \text{ is odd.}
\end{cases}
\]

Proof: To show the lower bound, consider graphs \(2K_{n-1} \) and \(K_1 \cup 2K_{n-1} \) for the first and second cases of Theorem respectively.

For the reverse inequality, firstly we will prove the result for the first case of Theorem. Let \(F \) be a graph of order \(2n - 1 \) containing no path \(P_n \) where \(n \geq \frac{sm}{2}(sm - 2) \). We will show that \(F \supseteq J_{s,m} \). Since \(F \) does not contain \(P_n \), by Theorem B, \(F \) will contain a wheel \(W_{sm} \), and so clearly \(F \supseteq J_{s,m} \).

For the second case, to prove \(R(P_n, J_{s,m}) \leq 2n \) let \(F \) be a graph on \(2n \) vertices containing no \(P_n \). Let \(L_1 = (l_{11}, l_{12}, \ldots, l_{1k-1}, l_{1k}) \) be a longest path in \(F \) and so \(k \leq n - 1 \). If \(k = 1 \) we have \(F \supseteq K_{2n} \), which contains \(J_{s,m} \). Suppose that \(k \geq 2 \) and \(F \) does not contain \(J_{s,m} \). Obviously, \(zl_{11}, zl_{1k} \) are not in \(E(F) \) for each \(z \in V_1 \), where \(V_1 = V(F) \setminus V(L_1) \). Let \(L_2 = (l_{21}, l_{22}, \ldots, l_{2t-1}, l_{2t}) \) be a longest path in \(F[V_1] \). It is clear that \(1 \leq t \leq k \). Let \(V_2 = V(F) \setminus (V(L_1) \cup V(L_2)) \). We distinguish three cases.
Case 1: $k < sm - 1$. If $t = 1$ then the vertices in V_1 induce a subgraph having only isolated vertices. In this case we shall add an edge uv to F, where $u, v \in V_1$ and denote $L_2 = u, v$. In this way we can define inductively the system of paths $L_1, L_2, \ldots, L_{sm-1}$ such that L_i is a longest path in $F[V_{i-1}]$, where $V_{i-1} = V(F) \setminus \bigcup_{j=1}^{i-1} V(L_j)$ or an edge added to F as above. If F_1 denotes the graph F or the graph F plus some edges added in the process of defining the system of paths, it follows that endpoints of these L_j, where $j = 1, 2, \ldots, sm - 1$ induce in F_1 a complete graph K_{sm-1} minus a matching having at most $\frac{sm-1}{2}$ edges if some of the endpoints of same L_j are adjacent in F_1. Since $s, m \geq 3$ there exist at least two vertices x, y which are not adjacent to all endpoints of these L_j. Thus, it is easy to see that vertices x, y together with all endpoints of paths L_j form a $J_{s, m} \subseteq \overline{F_1} \subseteq \overline{F}$.

Case 2: $k \geq sm - 1$ and $t \geq sm - 1$. For $i = 1, 2, \ldots, \frac{sm-3}{2}$ define the couples A_i in path L_1 as follows:

$$A_i = \begin{cases}
{l_{1i+1}, l_{1i+2}} & \text{for } i \text{ odd}, \\
{l_{1k-i}, l_{1k-i+1}} & \text{for } i \text{ even}.
\end{cases}$$

Similarly, define couples B_i in path L_2 as follows:

$$B_i = \begin{cases}
{l_{2i+1}, l_{2i+2}} & \text{for } i \text{ odd}, \\
{l_{2t-i}, l_{2t-i+1}} & \text{for } i \text{ even}.
\end{cases}$$

Since $t \leq k \leq n - 1$ and $|F| = 2n$, there exist at least two vertices x, y which are not in $L_1 \cup L_2$. Since L_1 is a longest path in F, there exists one vertex of A_i for each i, say a_i which is not adjacent with x. Similarly, since L_2 is a longest path in $V(F) \setminus V(L_1)$ there must be one vertex, say b_i, in couple B_i which is not adjacent to x for each i. By maximality of path L_1, $b_i a_i$ and $a_i b_{i+1}$ are not in $E(F)$ for each i. Thus $\{l_1, b_1, a_1, b_2, a_2, \ldots, b_{sm-3}, a_{sm-3}, l_{2i}, y\}$ will form a cycle C_{sm} in \overline{F} and since x is adjacent with at least $sm - 1$ vertices of cycle C_{sm} in \overline{F}, we have a subgraph in \overline{F} which contain $J_{s, m}$, so $J_{s, m} \subseteq \overline{F}$.

Case 3: $k \geq sm - 1$ and $t < sm - 1$. Since $k \leq n - 1$ (F has no P_n), V_1 will have at least $n + 1$ vertices. Then, we can define the same process as in Case 1, since $n + 1 - (sm - 2) \frac{sm-1}{2} \geq \frac{sm+1}{2} \geq 5$.

In the following theorem we derive Ramsey number $R(tP_n, J_{s, m})$ for any integer $t \geq 1$, even s and $m \geq 3$, where n is large enough with respect to s and m as follows.

Theorem 3. $R(tP_n, J_{s, m}) = tn + \frac{sm}{2} - 1$ if $n \geq (\frac{sm}{2} - 1)(2sm - 1) + 1$, $s \geq 2$ is even, $m \geq 3$ and t is any positive integer.

Proof: Since graph $G = K_{sm-1} \cup K_{m-1}$ contains no tP_n and \overline{G} contains no $J_{s, m}$, then $R(tP_n, J_{s, m}) \geq tn + \frac{sm}{2} - 1$. For proving the upper bound, let F be
On the Ramsey numbers

a graph of order \(tn + \frac{nm}{2} - 1 \) such that \(F \) contains no \(J_{s,m} \). We will show that \(F \) contains \(tP_n \). We use induction on \(t \). For \(t = 1 \) this is true from Theorem 1. Now, let assume that the theorem is true for all \(t' \leq t - 1 \). Take any graph \(F \) of \(tn + \frac{nm}{2} - 1 \) vertices such that its complement contains no \(J_{s,m} \). By the induction hypothesis, \(F \) must contain \(t - 1 \) disjoint copies of \(P_n \). Remove these copies from \(F \), then by Theorem 1 the subgraph \(F[H] \) on remaining vertices will induce another \(P_n \) in \(F \) since \(F \not\supseteq J_{s,m} \), so \(F[H] \not\supseteq J_{s,m} \). Therefore \(F \supseteq tP_n \). The proof is complete. \(\square \)

References

Received: 1.05.2008.

COMSATS Institute of Information Technology, Lahore, Pakistan.
E-mail: akashifali@gmail.com
Combinatorial Mathematics Research Division,
Institut Teknologi Bandung, Indonesia.
E-mail: ebaskoro@math.itb.ac.id

Faculty of Mathematics and Computer Sciences, University of Bucharest,
Str. Academiei, 14,
010014 Bucharest, Romania.
E-mail: ioan@fmi.unibuc.ro